

DOCKER IMAGE BUILDING FOR
CAN DEPLOYMENT

Cognitive Assistant for Networks (CAN) 7.0

AUGUST 3, 2023
AVANSEUS TECHNOLOGIES PVT. LTD.

P a g e | 1
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

REVISION HISTORY

Version Date
Change

description
Created by Updated by Reviewed by

V5.5 August 2021 Initial Release Umesh/Naveen
Sandeep
Singh

Chiranjib

V6.0 January 2023 Release 6.0 Neha/Naveen Raksha Chiranjib

V7.0 August 2023 Beta Release Neha/Naveen Raksha Chiranjib

P a g e | 2
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Table of Contents
1. Focus3

2. Prerequisites3

3. Image Creation3

3.1 MongoDB Image3

3.2 OpenDJ LDAP Image3

3.3 VBI Python Module Image4

3.4 CAN Application Image (CAN Module)4

3.5 Prediction Controller Image4

3.6 Prediction Worker Image5

3.7 Performance Prediction Counter Image5

3.8 BatchHandler Image5

3.9 RecordProcessor Image6

3.10 PythonProcessor Image6

3.11 JSProcessor Image6

3.12 RTSP Image7

3.13 BCXP Image7

3.14 3GPP Image7

3.15 AnsibleProcessor Image8

P a g e | 3
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

DOCKER BUILDING IMAGES

1. Focus

This document focuses on building an image of CAN application and all other supporting
applications. This document is mainly for the Avanseus team who builds the Docker image
before distributing. Docker images created for CAN applications to run are:

1. MongoDB image
2. OpenDJ LDAP image
3. VBI python module image
4. CAN application image (CAN Module)
5. Prediction Controller image
6. Prediction Worker Image
7. Performance Counter Prediction image
8. Batch handler image
9. Record processor image
10. Python processor image
11. JS Processor Image
12. RTSP image
13. BCXP image
14. 3GPP image
15. Ansible processor image

2. Prerequisites

Private Docker Registry server for storing and distributing the docker images.

3. Image Creation

Note: For automatically compiling and building all the applications (CAN, CAS,
PredictionWorker & PredictionController), creating docker builds and pushing them to desired
Docker registry repository, please refer the document “CAN 7.0 Jenkins Auto Build for
Applications”.

3.1 MongoDB Image

The DockerHub repository, by default, provides a MongoDB image. It is used to create the
setup.

Command to download MongoDB-4.4 image:

$sudo docker pull mongo:4.4

Command to push the built image to the private docker registry:

$sudo docker tag mongo:4.4 <IP/DOMAIN>/<PATH>/mongo:v1

$sudo docker push <IP/DOMAIN>/<PATH>/mongo:v1

IP/DOMAIN: Domain name or IP address of the registry server.

PATH: Path where all the docker images will be stored.

3.2 OpenDJ LDAP Image

User will find all the files required for creating an OPENDJLDAP image in
kubernetes_resources/DOCKER_FILES// folder of the GIT repository.

Command to build the OPENDJ LDAP:

$cd kubernetes_resources/DOCKER_FILES/ OPENDJLDAP/

$sudo docker build . -t avanseuscontainer.com/release/6.0/ldap:v1 --build-arg
VERSION=4.4.14

P a g e | 4
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Command for pushing the built image to the private docker registry is as follows:

$sudo docker tag ldap:4.4 <IP/DOMAIN>/<PATH>/ldap:v1

$sudo docker push <IP/DOMAIN>/<PATH>/ldap:v1

3.3 VBI Python Module Image

• Download and use the quickstart package for building VBI images from this link. Un-tar
and user will find a directory with important artifacts needed for building VBI images.

• Go into the “VBI” directory of the quickstart package. Update the latest python script file in
the directory with name “docker_socket_server_json.py”.

Command to build the image:

$sudo docker build . -t vbi:v1

Command to push the built image to the private docker registry:

$sudo docker tag vbi:v1 <IP/DOMAIN>/<PATH>/vbi:v1

$sudo docker push <IP/DOMAIN>/<PATH>/vbi:v1

3.4 CAN Application Image (CAN Module)

User will find all the files required for creating a CAN image in
kubernetes_resources/DOCKER_FILES/CAN/ folder of the GIT repository. Go to
kubernetes_resources/DOCKER_FILES/CAN/.

• Add the newly built CAN war (CAN.war) file in this folder.

• Update the nasmout folder contents with the contents of the folder
MasterTables/nasPath/ of the GIT repository.

$cp -r MasterTables/nasPath/* kubernetes_resources/DOCKER_FILES/CAN/nasmount/

Command to build the image:

$cd kubernetes_resources/DOCKER_FILES/CAN/

$sudo docker build . -t can:v1

Command to push the built image to the private docker registry:

$sudo docker tag can:v1 <IP/DOMAIN>/<PATH>/can:v1

$sudo docker push <IP/DOMAIN>/<PATH>/can:v1

3.5 Prediction Controller Image

• User will find all the files required for creating a PredictionController image in
kubernetes_resources/DOCKER_FILES/PredictionController/ folder of the GIT repository.
Go to kubernetes_resources/DOCKER_FILES/PredictionController/.

• Add the newly built Prediction Controller war (PredictionController.war) file in this
directory.

Command to build the image:

$cd kubernetes_resources/DOCKER_FILES/PredictionController/

$sudo docker build . -t predictioncontroller:v1

P a g e | 5
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Command to push the built image to the private docker registry:

$sudo docker tag predictioncontroller:v1 <IP/DOMAIN>/<PATH>/predictioncontroller:v1

$sudo docker push <IP/DOMAIN>/<PATH>/predictioncontroller:v1

3.6 Prediction Worker Image

Prerequisite: For building the CPP executable binary file of PredictionWorker, install C++ 11
version. Use “make clean” and “make” commands to clean and build the CPP executable file.
If C++ 11 version is not installed in the local system for building the PredictionWorker, refer
the document “CAN 7.0 Jenkins Auto Build for Applications”.

• User will find all the files required for creating a PredictionWorker image in
kubernetes_resources/DOCKER_FILES/PredictionWorker/ folder of the GIT repository.
Go to kubernetes_resources/DOCKER_FILES/PredictionWorker/.

• Update the latest build of the PredictionWorker i.e., universal file.

Command to build the image:

$cd kubernetes_resources/DOCKER_FILES/PredictionWorker/

$sudo docker build . -t predictionworker:v1

Command to push the built image to the private docker registry:

$sudo docker tag predictionworker:v1 <IP/DOMAIN>/<PATH>/predictionworker:v1

$sudo docker push <IP/DOMAIN>/<PATH>/predictionworker:v1

3.7 Performance Prediction Counter Image

• User will find all the files required for creating a PCP image in
kubernetes_resources/DOCKER_FILES/PCP/ folder of the GIT repository. Go to
kubernetes_resources/DOCKER_FILES/PCP/.

• Add the newly built PCP war (PCP.war) file in this folder.

Command to build the image:

$cd kubernetes_resources/DOCKER_FILES/PCP/

$sudo docker build . -t pcp:v1

Command to push the built image to the private docker registry:

$sudo docker tag pcp:v1 <IP/DOMAIN>/<PATH>/pcp:v1

$sudo docker push <IP/DOMAIN>/<PATH>/pcp:v1

3.8 BatchHandler Image

• User will find all the files required for creating a BatchHandler image in
kubernetes_resources/DOCKER_FILES/BatchHandler/ folder of the GIT repository.

• Add the newly built BatchHandler jar (BatchHandler.jar) file in this folder.

Command to build the BatchHandler image:

$cd kubernetes_resources/DOCKER_FILES/BatchHandler/

$sudo docker build . -t batchhandler:v1

P a g e | 6
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Command to push the built image to the private docker registry:

$sudo docker tag batchhandler:v1 <IP/DOMAIN>/<PATH>/batchhandler:v1

$sudo docker push <IP/DOMAIN>/<PATH>/batchhandler:v1

3.9 RecordProcessor Image

• User will find all the files required for creating a RecordProcessor image in
kubernetes_resources/DOCKER_FILES/RecordProcesssor/ folder of the GIT repository.

• Add the newly built RecordProcessor jar (RecordProcessor.jar) file in this folder.

Command to build the RecordProcessor:

$cd kubernetes_resources/DOCKER_FILES/RecordProcessor/

$sudo docker build . -t recordprocessor:v1

Command to push the built image to the private docker registry:

$sudo docker tag recordprocessor:v1 <IP/DOMAIN>/<PATH>/recordprocessor:v1

$sudo docker push <IP/DOMAIN>/<PATH>/recordprocessor:v1

3.10 PythonProcessor Image

• User will find all the files required for creating a PythonProcessor image in
kubernetes_resources/DOCKER_FILES/PythonProcessor/ folder of the GIT repository.

• Copy the python code files from PythonProcessor-server/Python-server/python/ directory
in the local repository to kubernetes_resources/DOCKER_FILES/PythonProcessor/ folder
of the GIT repository.

Command to build the PythonProcessor:

$cd kubernetes_resources/DOCKER_FILES/pythonprocessor/

$ sudo docker build . -t pythonprocessor:v1

Command to push the built image to the private docker registry:

$sudo docker tag pythonprocessor:v1 <IP/DOMAIN>/<PATH>/pythonprocessor:v1

$sudo docker push <IP/DOMAIN>/<PATH>/pythonprocessor:v1

3.11 JSProcessor Image

• User will find all the files required for creating a JSProcessor image in
kubernetes_resources/DOCKER_FILES/JSProcessor / folder of the GIT repository.

• Copy the js_server.js and package.json files from JSProcessor-server/JS-server/
directory here.

• Copy the jsprocessor.proto file from JSProcessor-model/src/main/proto/ directory here

Command to build the JSProcessor:

$cd kubernetes_resources/DOCKER_FILES/JSProcessor /

$ sudo docker build . -t jsprocessor:v1

Command to push the built image to the private docker registry:

P a g e | 7
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

$sudo docker tag jsprocessor:v1 <IP/DOMAIN>/<PATH>/jsprocessor:v1

$sudo docker push <IP/DOMAIN>/<PATH>/jsprocessor:v1

3.12 RTSP Image

• User will find all the files required for creating a RTSP image in
kubernetes_resources/DOCKER_FILES/RTSP/ folder of the GIT repository.

• Add the newly built RTSP jar (RTSP.jar) file in this folder.

Command to build the RTSP:

$cd kubernetes_resources/DOCKER_FILES/RTSP/

$sudo docker build . -t rtsp:v1

Command to push the built image to the private docker registry:

$sudo docker tag rtsp:v1 <IP/DOMAIN>/<PATH>/rtsp:v1

$sudo docker push <IP/DOMAIN>/<PATH>/rtsp:v1

3.13 BCXP Image

• User will find all the files required for creating a Bcxp image in
kubernetes_resources/DOCKER_FILES/Bcxp/ folder of the GIT repository.

• Add the newly built Bcxp war (Bcxp.war) file in this folder.

Command to build the BCXP:

$cd kubernetes_resources/DOCKER_FILES/Bcxp/

$sudo docker build . -t bcxp:v1

Command to push the built image to the private docker registry:

$sudo docker tag bcxp:v1 <IP/DOMAIN>/<PATH>/bcxp:v1

$sudo docker push <IP/DOMAIN>/<PATH>/bcxp:v1

3.14 3GPP Image

• User will find all the files required for creating a 3GPP image in
kubernetes_resources/DOCKER_FILES/ThreeGPP folder of the GIT repository.

• Add the newly built 3GPP jar (ThreeGPP.jar) file in this folder.

Command to build the 3GPP:

$cd kubernetes_resources/DOCKER_FILES/ ThreeGPP/

$ sudo docker build . -t threegpp:v1

Command to push the built image to the private docker registry:

$sudo docker tag threegpp:v1 <IP/DOMAIN>/<PATH>/threegpp:v1

$sudo docker push <IP/DOMAIN>/<PATH>/threegpp:v1

P a g e | 8
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

3.15 AnsibleProcessor Image

• User will find all the files required for creating an AnsibleProcessor image in
kubernetes_resources/DOCKER_FILES/AnsibleProcessor/ folder of the GIT repository.

• Add the newly built AnsibleProcessor jar (AnsibleProcessor.jar) file in this folder.

Command to build the BatchHandler image:

$cd kubernetes_resources/DOCKER_FILES/AnsibleProcessor/

$sudo docker build . -t ansibleprocessor:v1

Command to push the built image to the private docker registry:

$sudo docker tag ansibleprocessor:v1 <IP/DOMAIN>/<PATH>/ansibleprocessor:v1

$sudo docker push <IP/DOMAIN>/<PATH>/ansibleprocessor:v1

	Table of Contents
	1. Focus
	2. Prerequisites
	3. Image Creation
	3.1 MongoDB Image
	3.2 OpenDJ LDAP Image
	3.3 VBI Python Module Image
	3.4 CAN Application Image (CAN Module)
	3.5 Prediction Controller Image
	3.6 Prediction Worker Image
	3.7 Performance Prediction Counter Image
	3.8 BatchHandler Image
	3.9 RecordProcessor Image
	3.10 PythonProcessor Image
	3.11 JSProcessor Image
	3.12 RTSP Image
	3.13 BCXP Image
	3.14 3GPP Image
	3.15 AnsibleProcessor Image

