8V805€Ué§

REVISION HISTORY

V1.0 November, Release 6.0 Hemanth/Yash Raksha Chiranjib
2022

AVANSEUS TECHNOLOGIES PVT. LTD.

avanseu&

Table of Contents

Prometheus Role in CAN MONITOTING ...vieiiiiiiieiiiiiee ettt e e e e e
1013 = 11 F= 1A] o F SRR RR
Istio’s Role With Prometheus...............oooo e
F N o] T =00 A = SRR
YL A o Y o 1 SRR
U] T g Yo T OAUE] (o) o g 1Y =] 4 o=

INSTAIIING PUSNGAIEWAYceoiiieiieiiiiiiee ettt e e e e e
Configuring Pushgateway as a SCrape targetl........ccoocuvveeiiiireeeiniiieee i
Prometheus mMetriC fOrMal..........ooiiiiiiiiii e
PUushing metric from CLI.....c.e e e e e e e e e e e e e e aeans
Pushing metric from Java-ClIENT.........coiiiiiii e
Data Retention iN PromMethNEUS...........uii i
Configuring Additional Instance of Prometheus..........ccccoiieiiii e,

FULUTE SCOPE OF WOTK .o e e e e e e e e

AVANSEUS TECHNOLOGIES PVT. LTD.

SVSHSEUSQ

Prometheus Role in CAN Monitoring

Prometheus is an open-source monitoring solution for collecting and aggregating metrics as time series
data, i.e. metrics information is stored with the timestamp at which it was recorded, alongside optional
key-value pairs called labels. Every time series is uniquely identified by its “metric name” and “labels”.

Installation

There are several ways to install Promotheus like using helm chart, using manifest file, using docker
images and many more. Since CAN uses Istio service mesh, enable “Promethus” as an add-on that
comes as a part of its core package. This will ease the installation and execution of Prometheus.

Istio’s Role with Prometheus

In an Istio service mesh, each component exposes an endpoint that emits metrics. Prometheus works
by scraping these endpoints and collecting the results. To simplify the configuration of metrics, Istio
offers a mode of operation called “Metrics merging” (enabled by default) though which
“prometheus.io” annotations are added to all data plane pods to set up scraping. If these annotations
already exist, they are overwritten. With this option, the Envoy sidecar merges Istio’s metrics with the
application metrics.

Architecture

Basic architectural view of Prometheus is as shown:

Pull target autodiscover
-latency

-requests
-@ITors
Kubernetes API s :
H Grafana
™ A 0 Promeheus Server)
‘ Pull } Data

autodiscovered H [+

LDAP CAN romQL visualization
R ’_‘;:"i‘!s_gl_yl_c_e“_{ Retrieval }{ TSDB }4{ b] and export
] etrics server

é . = : Kiall

redis MongoDB E Q

Pull
-kube state metrics

-container exporters |
-kube components

Kubernetes nodes

Prometheus server pulls metrics from,
1. Kube API server that is instrumented and exposes Prometheus metrics by default,
providing monitoring metrics like latency, requests, errors, etcd and cache status.
2. Auto discovered micro-service metrics from applications like CAN, MongoDB, Worker,
Controller etc.
3. Also, Prometheus must collect metrics related to the Kubernetes services and nodes
using:

AVANSEUS TECHNOLOGIES PVT. LTD.

avanseu&

e Container exporters i.e. cAdvisor provides the resource usage and performance
characteristics of their running containers such as memory, CPU etc.

e Kube-state-metrics for integrated and cluster level metrics: deployments, pod
metrics, resource reservation, etc.
Kubernetes control plane metrics: kubelet, etcd, dns, scheduler, etc.
Kubernetes Metric server is a cluster-wide aggregator of resource usage data. It
collects resource metrics from the kubelet running on each worker node and
exposes them in the Kubernetes API server through the Kubernetes Metrics API.

Prometheus stores all scraped samples locally and runs rules over this data to either aggregate or
record new time series from existing data. In this case, Grafana and Kiali are used to visualize and to
generate alerts from the collected data.

Metric Types

Promotheus supports three types of metrics. It is important to understand “what are they?” and “when
to use what?” while creating a custom metric.
1. Counter: A counter is a cumulative metric that represents a single monotonically increasing
counter whose value can only increase.
For example, Number of requests served, tasks completed, or errors.
2. Gauge: A gauge is a metric that represents a single numerical value that can arbitrarily go up
and down.
For example, number of currently running processes, number of alarms received within the
context of CAN application.
3. Histogram: A histogram samples observation and counts them in configurable buckets. It
also provides a sum/count/average of all observed values.
For example, request durations or response sizes.
4, Summary: Similar to a histogram, a summary samples observation (like request durations
and response sizes).
For example, Number of requests made by Controller to worker within a duration of 5
minutes.

Pushing Custom Metrics

Apart from the metrics scraped by Prometheus, there is need to monitor few components that cannot
be scraped. Hence, pushing custom metrics to the Prometheus data source can be accomplished using
“Pushgateway”.

Pushgateway is a feature of Prometheus that allows ephemeral and batch jobs to expose their metrics
to the application. Often, these types of jobs do not have a long enough lifecycle for software
programs to scrape them and pull the vast amount of metrics necessary for effective network
monitoring.

With Pushgateway, metrics series is continually exposed to Prometheus. This Pushgateway
application has client libraries for Go, Java, Scala, Python, and Ruby, making it useful for a wide
audience. Java client library is used to push the custom metrics in the example provided later.

Short lived Push Pull O Promeheus Server
jobsicustom p------ U » Push Gateway <—- " €=~ T
PR metrics metrics ' HTTP
metrics ‘ TSDB |«-- }
{ J server |

AVANSEUS TECHNOLOGIES PVT. LTD.

avanselis Na

Installing PushGateway

1. Add therequired repository:

$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

2. Install Pushgateway:

$ helm install pushgateway prometheus-community/prometheus-
pushgateway -n default

Configuring Pushgateway as a scrape target

Configure Pushgateway as a Scrape target for Prometheus Server. Add the below lines in
scrape_configs section in the prometheus configmap.

- job_name: custom-prometheus-pushgateway
honor_labels: true
static_configs:
- targets:
- pushgateway-prometheus-pushgateway.default.svc.cluster.local:9091

If the Prometheus service was already running, stop it and re-start the service.
Use below commands:

kubectl delete -f prometheus.yaml -n istio-system
kubectl apply -f prometheus.yaml -n istio-system
kubectl get pods -n istio-system

Prometheus Pushgateway is successfully installed and configured. Next step is to push the custom
metric to PushGateway from the client application (written in java/shell/Go/python), so that
Promotheus can scrape the custom metric.

Prometheus metric format

The pushed metrics are managed in groups, identified by a grouping key of any number of labels, of
which the first must be the job label. The groups are easy to inspect via the web interface or to delete
them together in the later stages. In general, one has to understand how to read the metric. A metric
is composed by several fields:

e Metric name

e Any number of labels (can be 0), represented as a key-value array

e Current metric value

General syntax of metric display is as follows:

<MetricName>{<labelNamel>=<Valuel>......<labelN>=<ValueN>} <metricValue>

For example:
istio_requests_total{destination_workload_namespace=~"avanseus-workspace",
destination_workload=~"worker", reporter="source", source_workload=~"controller",
source_workload_namespace=~"avanseus-workspace"} 345

Where,
e Istio requests_total is <MetricName>

AVANSEUS TECHNOLOGIES PVT. LTD.

—
avanseus

e destination workload namespace=~"avanseus-workspace" is label name and value pair.
Many such labels are present in the above example.
e 345 s the value captured at a given point of time for Istio_requests_total metric.

Pushing metric from CLI

As mentioned earlier, it is possible to push the custom metric from CLI via CURL command or through
shell scripts. Below are the two different ways to push it using CURL command:

e Push a single sample into the group identified by {job="some_job"}:

echo "some_metric 3.14" | curl --data-binary @-
http://pushgateway.example.org:9091/metrics/job/some_job

e Push complex sample into the group identified by:
{job="some_job" instance="some_instance"}:

cat <<EOF | curl --data-binary @-
http://pushgateway.example.org:9091/metrics/job/some_job/instance/some
instance

TYPE some_metric counter

some_metric{label="vall"} 42

TYPE another_metric gauge

HELP another_metric Just an example.

another_metric 2398.283

EOF

Note: From the above example, it infers that pushing complex custom metric from CLI would be
tedious. Hence, use client library to do the same.

Pushing metric from Java-client

To better understand this, consider a scenario wherein define a custom metric called
“Total_Processed_Line_Count” to know the number of lines processed from the provided input file as
received from Controller application from the CAN (consumer) module during a prediction run.

Ideally, after the Controller module completes its batch job, “Total_Processed_Line_Count” metric
should give the same count value as that of the number of lines present in the input file. This metric
also helps to understand the number of predictions happened for the given input file.

In order to do this we need to do the following steps in sequence:

1. Add push gateway dependency in your pom.xml

<l-- Pushgateway exposition-->

<dependency>
<groupld>io.prometheus</groupld>
<artifactld>simpleclient_pushgateway</artifactld>
<version>0.16.0</version>

</dependency>

2. Create a collector registry and pushgateway object.

CollectorRegistry pushRegistry = new CollectorRegistry();

AVANSEUS TECHNOLOGIES PVT. LTD.

http://pushgateway.example.org:9091/metrics/job/some_job
http://pushgateway.example.org:9091/metrics/job/some_job
http://pushgateway.example.org:9091/metrics/job/some_job/instance/some_instance
http://pushgateway.example.org:9091/metrics/job/some_job/instance/some_instance
http://pushgateway.example.org:9091/metrics/job/some_job/instance/some_instance

avanseu&

PushGateway pushGateway = new PushGateway("pushgateway-prometheus-
pushgateway.default.svc.cluster.local:9091"); //EndPoint of your pushGateway server

3. Create the object of appropriate metric type (counter/guage/histogram) and register with
required CollectorRegistry by specifying ‘metricName’ and other optional attributes. Then
calculate the metric value and push it to the gateway.

CollectorRegistry pushRegistry = new CollectorRegistry();

Gauge gauge = (Gauge) Gauge.build().name("total_processed_line_count").help("Total
number lines processed in the input file.").register(pushRegistry);

gauge.set(lineCount); //your logic to calculate lineCount

Map<String,String> queryAttributesMap=new HashMap<>();
queryAttributesMap.put(“application","controller");
queryAttributesMap.put("namespace","avanseus-workspace");
queryAttributesMap.put(“predictioninputFile",inputFilePath);

pushGateway.push(pushRegistry, "avanseus_prediction_count”, queryAttributesMap);

The above example is already implemented in the Avanseus Controller application which is responsible
for performing batch prediction by accepting prediction input file from the consumer module (CAN) as
a multipart request. Because of which a custom metric named “Total_Processed_Line_Count” is readily
available in Avanseus Grafana dashboard.

Data Retention in Prometheus

Sometimes adding many custom metrics may result in excessive disk usage. Given that disk space is
a finite resource, limit must be set on how much of it Prometheus will use.

By default, Prometheus keeps 15 days of data. However, the default value can be changed using “-
storage.tsdb.retention.time” flag when Prometheus starts. It defines the duration the data has to be
kept in the time-series database (TSDB).

Pushing a custom metric at a lesser frequency (~15 secs or 1 min) and keeping 15 days of metric-
data consumes huge disk space. In similar cases, Avanseus is not interested in persisting 15 days of
historical metric data instead it is willing to store a lesser period of data (~4 hrs or 1 day). However,
Prometheus does not support multiple retention policies. Only a single retention policy can be
configured for all the stored data.

Therefore, the easiest solution would be to run multiple Prometheus instances with distinct scrape
configs and distinct retention periods.

Configuring Additional Instance of Prometheus

This is an optional step. Install an additional instance of Prometheus if and only if a custom metric
data is pushed at a lesser frequency (~15 seconds or 1 min or 5 minutes). The idea here is to
configure this Prometheus instance with a custom data retention policy. By default, Prometheus keeps
15 days of data. Hence, collecting custom metric at lesser frequency there is a high probability of
running out of space. The solution is to install an additional Prometheus instance with custom data
retention policy (~2 hours or 4 hours or 2 days) as shown in the below steps:

1. Create a namespace:
$ kubectl create ns prometheus

AVANSEUS TECHNOLOGIES PVT. LTD.

BVSHSQU&

2. Install Prometheus:
Go to kubernetes_resources/Helm_Charts/NFS_STORAGE_HELM/ folder.
Use the folder “avanseus-prometheus-chart” and execute the below command to
install prometheus:
$ helm install prometheus ./avanseus-prometheus-chart —n
prometheus
The above command will install another instance of Prometheus with the data
retention period of 2-hour i.e. Prometheus can keep data only for 2 hours.

In this case, use
prometheus-pushgateway.prometheus.svc.cluster.local:9091 as a pushGateway server endpoint
when you push metrics using CLI or Java Client.

Future Scope of Work

In the previous section, an example is highlighted on how to push a custom metric (named
“Total_Processed_Line_Count”) to prometheus pushgateway from client application. This idea can be
extended for tracking any business critical metrics like “Total_Alarm_Count”,
“Total_ApplicationException_Count”, “Duration_Of Dataload” and many more in future days. These
metrics can be viewed from the Grafana dashboard by configuring the appropriate panels and it is
possible to create alerts and notifications through which pro-active actions can be taken to avoid the
possible damage.

AVANSEUS TECHNOLOGIES PVT. LTD.

	Prometheus Role in CAN Monitoring
	Installation
	Istio’s Role with Prometheus
	Architecture
	Metric Types
	Pushing Custom Metrics
	Installing PushGateway
	Configuring Pushgateway as a scrape target
	Prometheus metric format
	Pushing metric from CLI
	Pushing metric from Java-client

	Data Retention in Prometheus
	Configuring Additional Instance of Prometheus
	Future Scope of Work

