[image: avanseus.png]

CAN MIGRATION
Migration from Version 5.5 to 6.0

REVISION HISTORY
Version	Date	Change description	Created by	Updated by	Reviewed by
V 1.0	July, 2021	Initial Release	Sunil	Sandeep Singh	Chiranjib
V 2.0	April, 2023	Updates	Umesh	Raksha	Chiranjib

Table of Contents
1. Objective	3
2. Update database by adding new entries, removing or updating the existing entries to the existing collections	3
2.1 Changes related to Excel Report Configuration	3
2.2 Changes related to Excel Page Configuration	5
2.3 Changes related to PostPredictionProcess	9
2.4 Changes related to Pre-Processor	9
2.5 Changes related to Post-Processor	9
2.6 Changes related to Record Parser (EventFileFormatTemplate)	9
2.7 Changes related to ROE Screen	43
2.8 Changes related to Filter Configuration Screen	45
2.9 Changes related to KPI Management Screen	47
2.10 Changes related to Cause Management Screen	47
2.11 Changes related to Predicted Fault screen	47
2.12 Changes related to Topology Discovery screen	48
2.13 Changes related to Data Collection Configuration	48
2.14 Changes related to Data Collection Audit	48
2.15 Changes related to Config Entry	49
2.16 Changes related to Office Code table	52
2.17 Changes related to EquipmentToEquipmentComponent table	52
3. Addition of new config entries in Config collection	52
3.1 Site Management screen (To monitor file upload completion status)	52
3.2 Fault Trace Generation	53
3.3 Ticket Correlation Prediction	54
3.4 Weather Configuration	55
3.5 Office Code Related	55
3.6 Cause Management	56
3.7 Cross-Domain Correlation	56
3.8 Performance Counter	59
3.9 CX Prediction Screen	70
4. Update the database with new collections	72
5. Addition of new entries to the config.properties	72
6. Porting from LDAP to OpenDJ	73
6.1. Restoring the old users from the existing LDAP	73
6.2 Installing OpenDJ	74
7. Update new CAN and CAS images in the Helm charts	74

[bookmark: _Toc132990839]1. Objective
This document gives systematic procedure to upgrade the CAN 5.5 environment to CAN 6.0.
NOTE: Please take DB backup before making the following changes.
This document covers the following updates:

1. [bookmark: _Int_YJSPB6Un]Added new Default Configuration for KPI and Health Index in ExcelReportConfiguration and ExcelPageConfiguration.
2. [bookmark: _Int_35dnucMn]Changes related to prediction type field in ExcelReportConfiguration, ExcelPageConfiguration, and Filter Configuration Screen for differentiating the configurations based on the prediction type.
3. [bookmark: _Int_lV4ukk1Q]Changes related to code language in PostPredictionProcess, Pre-Processor, Post-Processor, ROE Policy Configuration, Filter Configuration screen.
4. [bookmark: _Int_LIQacttJ]Added subDataSource field to the entire PERFORMANCE_COUNTER type data source in Data Collection Audit and Record Parser Screen.
5. [bookmark: _Int_kLXKYWSo]Added extra template for RoE sheet configuration.
6. [bookmark: _Int_u5oBWzEn]Addition of new Default Configuration for KPI in Filter Configuration Screen.
7. New field equipmentComponentType added in the cause object.
8. [bookmark: _Int_4fItBZIU]Adding port number to "SFTP" interface.
9. [bookmark: _Int_FG9fDJvd]New entries are added to the Config collection. Few unwanted config entries are removed and updated few entries in the config collection.
10. [bookmark: _Int_3Zuj8ieQ]Addition of new entries in the config.properties file that are related to new modules.
11. Porting from LDAP to opendj for secure connection between CAN and LDAP module.

[bookmark: _Toc132990840]2. Update database by adding new entries, removing or updating the existing entries to the existing collections
NOTE: For PredictedFault, Performance Counter screens (RealTime Streaming, ThresholdBreach and HealthIndex), CAN runs the prediction and the new dumped data will be populated in the screens.
[bookmark: _Toc132990841]2.1 Changes related to Excel Report Configuration
Adding Prediction Type parameter to ExcelReportConfiguration. Run the below script.
	db.ExcelReportConfiguration.find({}).forEach(function(doc){
 var objectId=doc._id;
 var predictionType=doc.predictionType
 if(predictionType == undefined){
 db.ExcelReportConfiguration.updateOne({"_id":objectId},
 {$set: { "predictionType":"ALARM"}});
 }
});

Inserting default configuration for KPI and Health Index in ExcelReportConfiguration.

	db.ExcelReportConfiguration.insert({"active" : true,
 "excelReportFormat" : "KPI_PredictionReport $startTimeStamp to $endTimeStamp .xlsx",
 "excelSheetConfigurations" : [
 {
 "sheetName" : "Threshold Breach Predictions",
 "query" : "{}",
 "pageConfiguration" : "629096d9ebb602039097c175",
 "pageConfigurationType" : "Basic"
 }
],
 "successEmailTemplate" : "Dear CAN user,
\n
\n Please find attached list of faults which are predicted to occur during the period $startTimeStamp - $endTimeStamp for your reference.

\n\n Should you have any query on this list, please send an e-mail to support@avanseus.com with subject \"CAN Predictions\".
\n
\nRegards,
\nCAN Admin",
 "failureEmailTemplate" : "Dear CAN user,
\n
\nThere were no new predicted faults generated today.\n

\n Should you have any query on this list, please send an e-mail to support@avanseus.com with subject \"CAN Predictions\".
\n
\n Regards,
\nCAN Admin",
 "dateFormat" : "dd-MM-yyyy_HH-mm",
 "percentageFormat" : "0.00%",
 "fontName" : "ARIAL",
 "successSubject" : "Sample Prediction report for $startTimeStamp - $endTimeStamp",
 "failureSubject" : "No Predictions for Sample Report",
 "predictionType" : "KPI",
 "name" : "SampleKPIReport",
 "enabled" : false})

db.ExcelReportConfiguration.insert({      "active" : true,
 "excelReportFormat" : "HealthIndex_PredictionReport $startTimeStamp to $endTimeStamp .xlsx",
 "excelSheetConfigurations" : [
 {
 "sheetName" : "HealthIndex",
 "query" : "{}",
 "pageConfiguration" : "629ef52288c8fc7081e432eb",
 "pageConfigurationType" : "Basic"
 }
],
 "successEmailTemplate" : "Dear CAN user,
\n
\n Please find attached list of faults which are predicted to occur during the period $startTimeStamp - $endTimeStamp for your reference.

\n\n Should you have any query on this list, please send an e-mail to support@avanseus.com with subject \"CAN Predictions\".
\n
\nRegards,
\nCAN Admin",
 "failureEmailTemplate" : "Dear CAN user,
\n
\nThere were no new predicted faults generated today.\n

\n Should you have any query on this list, please send an e-mail to support@avanseus.com with subject \"CAN Predictions\".
\n
\n Regards,
\nCAN Admin",
 "dateFormat" : "dd-MM-yyyy HH:mm",
 "percentageFormat" : "0.00%",
 "fontName" : "ARIAL",
 "successSubject" : "Sample Prediction report for $startTimeStamp - $endTimeStamp",
 "failureSubject" : "No Predictions for Sample Report",
 "predictionType" : "SUPERPOSED",
 "name" : "HealthIndex",
 "enabled" : false})

[bookmark: _Toc132990842]2.2 Changes related to Excel Page Configuration
Adding prediction Type parameter to ExcelPageConfiguration. Run the below script.
	db.ExcelPageConfiguration.find({}).forEach(function(doc){
 var objectId=doc._id;
 var predictionType=doc.predictionType
 if(predictionType == undefined){
 db.ExcelPageConfiguration.updateOne({"_id":objectId},
 {$set: { "predictionType":"ALARM"}});
 }
});

Adding codeLanguage field to columnConfigurations that has java code in ExcelPageConfiguration table.
	db.ExcelPageConfiguration.find({}).forEach(function(doc){
 var objectId=doc._id;
 var isClassNameExists = false;
 var isClassNameHeaderConfigExists = false;
 var newColumnConfigurations=doc.columnConfigurations;
 for(let i=0;i<doc.columnConfigurations.length;i++){
 if(doc.columnConfigurations[i].className != undefined){
 newColumnConfigurations[i].codeLanguage="JAVA";
 isClassNameExists = true;
 }
 if(doc.columnConfigurations[i].classNameHeaderConfig != undefined){
 newColumnConfigurations[i].codeLanguageHeaderConfig="JAVA";
 isClassNameHeaderConfigExists = true;
 }
 }
 if(isClassNameExists || isClassNameHeaderConfigExists){
 db.ExcelPageConfiguration.updateOne({"_id":objectId},
 {$set:
 { "columnConfigurations":newColumnConfigurations}
 });
 } PredictionFilter
});

Inserting default configuration for KPI and Health Index in ExcelPageConfiguration
	db.ExcelPageConfiguration.insert({"_id" : ObjectId("629096d9ebb602039097c175"), "headerName" : "Prediction from $startTimeStamp to $endTimeStamp",
 "fontColor" : "#000000",
 "fontSize" : 10.0,
 "headerBgColor" : "#c9d0d1",
 "matching" : true,
 "collectionName" : "PerformanceCounterPrediction",
 "freezeHeader" : false,
 "predictionType" : "KPI",
 "columnConfigurations" : [
 {
 "fieldName" : "performanceCounterEquipmentComponent.name",
 "columnName" : "Equipment Name",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "performanceCounterCause.name",
 "columnName" : "KPI",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "predictedValues",
 "columnName" : "PREDICTED VALUES",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 100.0,
 "wrapText" : true,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "minMaxValue",
 "columnName" : "DETERMINING PREDICTED VALUE",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "thresholdType",
 "columnName" : "THRESHOLD TYPE",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "thresholdValue",
 "columnName" : "THRESHOLD VALUE",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "severity",
 "columnName" : "Severity",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 }
],
 "name" : "KPI report",
 "enabled" : false})

db.ExcelPageConfiguration.insert({"_id" : ObjectId("629ef52288c8fc7081e432eb"),"headerName" : "Prediction from $startTimeStamp to $endTimeStamp",
 "fontColor" : "#000000",
 "fontSize" : 10.0,
 "headerBgColor" : "#c9d0d1",
 "matching" : true,
 "collectionName" : "HealthIndex",
 "freezeHeader" : false,
 "predictionType" : "SUPERPOSED",
 "columnConfigurations" : [
 {
 "fieldName" : "equipmentComponent",
 "columnName" : "Equipment Name",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "alarmName",
 "columnName" : "Cause",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "healthIndexValue",
 "columnName" : "Health Index",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "severity",
 "columnName" : "Severity",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "shortlistedKPIs",
 "columnName" : "Shortlisted KPIs",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 100.0,
 "wrapText" : true,
 "sortType" : "NONE",
 "enabled" : false
 },
 {
 "fieldName" : "recentAlarms",
 "columnName" : "Recent Alarms",
 "dataType" : "STRING",
 "merge" : false,
 "specBgHeadcolor" : "#c9d0d1",
 "specFontColor" : "#000000",
 "colWidth" : 0.0,
 "wrapText" : false,
 "sortType" : "NONE",
 "enabled" : false
 }
],
 "name" : "HealthIndexPage",
 "enabled" : false})

[bookmark: _Toc132990843]2.3 Changes related to PostPredictionProcess
Inserting codeLanguage and userCode fields and update the inputCode field in PostPredictionProcess
	db.PostPredictionProcess.find({}).forEach(function(doc){
 var id = doc._id.valueOf();
 var codeLanguage = "JAVA";
 var userCode = "\n\n\n\n\n\n\n\n\n\n\nreturn null;";
 var inputCode= "import com.avanseus.postPredictionProcessFileUpload.IPostPredictionProcessor;\nimport java.util.Map;\npublic class SamplePostProcessorFile implements IPostPredictionProcessor {\n\t\n@Override\n\t public Map<String, Object> execute(Map<String, Object> predictedFault) {\n\t\n\n\n\n\n\n\n\n\n\n\n\nreturn null;\n\t\n}\n}"
 db.PostPredictionProcess.updateOne({_id:ObjectId(id)},
 {$set:
 {
 "codeLanguage":codeLanguage,
 "userCode": userCode,
 "inputCode": inputCode
 }});
})

[bookmark: _Toc132990844]2.4 Changes related to Pre-Processor
Updating the codeLanguage field in Pre Processor

	db.Preprocessor.updateMany({},{"$set":{codeLanguage:"JAVA","javaCodeVersion" : {},"pythonCodeVersion" : {}}});

[bookmark: _Toc132990845]2.5 Changes related to Post-Processor
Updating the codeLanguage field in Post Processor
	db.Postprocessor.updateMany({},{"$set":{codeLanguage:"JAVA","javaCodeVersion" : {},"pythonCodeVersion" : {}}});

[bookmark: _Toc132990846]2.6 Changes related to Record Parser (EventFileFormatTemplate)
Changes related to EventFileFormatTemplate
Addition of "import com.avanseus.causeStandardization.CauseStandardizationWorkFlow;" import statement for "mappingFieldTemplate" in EventFileFormatTemplate.
	db.EventFileFormatTemplate.find({}).forEach(function(doc){
 var objectId=doc._id;
 var templateName = doc.templateName
 if(templateName == "mappingFieldTemplate"){
 var templateCodeSnippet = doc.templateCodeSnippet;
 templateCodeSnippet = templateCodeSnippet.replace(/import java.text.SimpleDateFormat;\n/g, "import java.text.SimpleDateFormat;\nimport com.avanseus.causeStandardization.CauseStandardizationWorkFlow;\n");
 db.EventFileFormatTemplate.updateOne({"_id":objectId},{$set:{"templateCodeSnippet":templateCodeSnippet}});
 }
});

Updating the existing EventFileFormatTemplate
	db.EventFileFormatTemplate.updateOne(
{"templateName" : "mappingFieldTemplate"},
{"$set":{
"templateCodeSnippet":"import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.causeStandardization.CauseStandardizationWorkFlow;\npublic class $className implements IParserUserField {\n\t\n@Override\n\tpublic $returnType getRow(Record row) {\n\t\n$javacode\n\t\n}\n}\n"
}}
);

db.EventFileFormatTemplate.insertOne(
{
 "_id" : ObjectId("62e11e74db06ab188ff6175b"),
 "templateName" : "customFileTypeTemplate",
 "description" : "template for Custom File Type",
 "templateCodeSnippet" : "import com.avanseus.exception.ApplicationException;\nimport com.avanseus.helper.Record;\nimport com.avanseus.logger.ApplicationLogger;\nimport com.avanseus.model.asa.EventFileFormat;\nimport org.apache.poi.hssf.usermodel.*;\nimport com.avanseus.eventFileFormat.ICustomFileParser;\n\nimport java.io.FileInputStream;\nimport java.io.FileNotFoundException;\nimport java.io.IOException;\nimport java.text.ParseException;\nimport java.text.SimpleDateFormat;\nimport java.util.ArrayList;\nimport java.util.HashMap;\nimport java.util.List;\nimport java.util.Map;\nimport com.avanseus.model.config.threshold.*;\npublic class $className implements ICustomFileParser {\npublic long rowCount=0;\n\n @Override\n public List<Record> readNextLines(String filePath, int numberOfLines) throws IOException {\n\n\t$javacode\n\n}\n}"
}
);

Changing userCode field to javaUserCode and added an extra field named codeLanguage to EventFileFormat

	db.EventFileFormat.find({},{"mapping":"$mappingInformation.mapping"}).forEach(function(event){
var newMapping=[];
event.mapping.forEach(function(e){
if(e.userCode){
e.javaUserCode=e.userCode;
delete e.userCode;
e.codeLanguage="JAVA";
}
newMapping.push(e);
})
db.EventFileFormat.updateOne({"_id":event._id},{
"$set":{
"mappingInformation.mapping":newMapping
}
});	
});

Added subDataSource field to the entire PERFORMANCE_COUNTER type data source

	db.EventFileFormat.updateMany(
 {
 dataSource:"PERFORMANCE_COUNTER"},{
 "$set":{
 	"subDataSource":"PERFORMANCE_COUNTER"
 }
 }
);

Note: Re-save the entire code snippet after running the migration script.
Sample Parser for Network inventory Dataload
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "resId"
 },
 {
 "referenceParentNetworkElement" : "refParentNe"
 },
 {
 "frameId" : "frameId"
 },
 {
 "serialNumber" : "sn"
 },
 {
 "name" : "name"
 },
 {
 "manufacturer" : "manufacturer"
 },
 {
 "softwareVersion" : "softVersion"
 },
 {
 "hardwareVersion" : "hardVersion"
 },
 {
 "productName" : "productName"
 },
 {
 "custom" : "\nMap<String, Object> info = new HashMap<>();\nif(row.get(\"alias\") != null){\n info.put(\"alias\", row.get(\"alias\"));\n}\nif(row.get(\"createTime\") != null){\n info.put(\"createTime\", row.get(\"createTime\"));\n}\nif(row.get(\"lastModified\") != null){\n info.put(\"lastModified\", row.get(\"lastModified\"));\n}\nif(row.get(\"remark\") != null){\n info.put(\"remark\", row.get(\"remark\"));\n}\nif(row.get(\"cleiCode\") != null){\n info.put(\"cleiCode\", row.get(\"cleiCode\"));\n}\nif(row.get(\"xcCapacity\") != null){\n info.put(\"xcCapacity\", row.get(\"xcCapacity\"));\n}\nreturn info;\n\n\n\n",
 "javaUserCode" : "\nMap<String, Object> info = new HashMap<>();\nif(row.get(\"alias\") != null){\n info.put(\"alias\", row.get(\"alias\"));\n}\nif(row.get(\"createTime\") != null){\n info.put(\"createTime\", row.get(\"createTime\"));\n}\nif(row.get(\"lastModified\") != null){\n info.put(\"lastModified\", row.get(\"lastModified\"));\n}\nif(row.get(\"remark\") != null){\n info.put(\"remark\", row.get(\"remark\"));\n}\nif(row.get(\"cleiCode\") != null){\n info.put(\"cleiCode\", row.get(\"cleiCode\"));\n}\nif(row.get(\"xcCapacity\") != null){\n info.put(\"xcCapacity\", row.get(\"xcCapacity\"));\n}\nreturn info;\n\n\n\n",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NCET_Frame_Additional_Fields implements IParserUserField {\n \n@Override\n public Map getRow(Record row) {\n \n\nMap<String, Object> info = new HashMap<>();\nif(row.get(\"alias\") != null){\n info.put(\"alias\", row.get(\"alias\"));\n}\nif(row.get(\"createTime\") != null){\n info.put(\"createTime\", row.get(\"createTime\"));\n}\nif(row.get(\"lastModified\") != null){\n info.put(\"lastModified\", row.get(\"lastModified\"));\n}\nif(row.get(\"remark\") != null){\n info.put(\"remark\", row.get(\"remark\"));\n}\nif(row.get(\"cleiCode\") != null){\n info.put(\"cleiCode\", row.get(\"cleiCode\"));\n}\nif(row.get(\"xcCapacity\") != null){\n info.put(\"xcCapacity\", row.get(\"xcCapacity\"));\n}\nreturn info;\n\n\n\n \n}\n}\n",
 "className" : "NCET_Frame_Additional_Fields",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "manufactureDate" : "manufactureDate"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "FRAME",
 "className" : "SampleFrameInformation",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleFrameInformation",
 "description" : "Contains frame information of transmission nodes",
 "enabled" : true,
 "createdOn" : ISODate("2022-10-21T07:44:48.437+0000"),
 "modifiedOn" : ISODate("2022-10-21T07:44:48.437+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "neA",
 "javaUserCode" : "String identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn identifier;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class SlotReferenceCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn identifier;\n \n}\n}\n",
 "className" : "SlotReferenceCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "referenceParentNetworkElement" : "neA",
 "javaUserCode" : "if(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkNodeReference implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";\n\t\n}\n}\n",
 "className" : "NetworkNodeReference",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "slotNumber" : "ethNeaCardSlot"
 },
 {
 "name" : "ethNeaCardSlot"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "SLOT",
 "className" : "SampleSlotInfoLoader",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleSlotInfoLoader",
 "description" : "Containing slot information",
 "enabled" : true,
 "createdOn" : ISODate("2022-12-12T16:49:36.274+0000"),
 "modifiedOn" : ISODate("2022-12-12T16:49:36.274+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "neA",
 "javaUserCode" : "String identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn identifier;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class CardIdentifierCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn identifier;\n \n}\n}\n",
 "className" : "CardIdentifierCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "referenceParentNetworkElement" : "neA",
 "javaUserCode" : "if(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetwworkNodeCardReference implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";\n\t\n}\n}\n",
 "className" : "NetwworkNodeCardReference",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "slotNumber" : "ethNeaCardSlot"
 },
 {
 "cardType" : "ethNeaPortdisp"
 },
 {
 "name" : "ethNeaCardSlot",
 "javaUserCode" : "String name = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n name = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn name;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class CardNameCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString name = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n name = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn name;\n \n}\n}\n",
 "className" : "CardNameCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "CARD",
 "className" : "SampleCardInfoLoader",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleCardInfoLoader",
 "description" : "Containing card information",
 "enabled" : true,
 "createdOn" : ISODate("2022-12-12T16:53:14.183+0000"),
 "modifiedOn" : ISODate("2022-12-12T16:53:14.183+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "resId"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 100.0,
 "subDataSource" : "SUBNET",
 "className" : "SampleSubnet",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleSubnet",
 "description" : "Contains Subnet information",
 "enabled" : true,
 "createdOn" : ISODate("2022-10-21T07:32:08.038+0000"),
 "modifiedOn" : ISODate("2022-10-21T07:32:08.038+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "neA",
 "javaUserCode" : "String identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty() && row.get(\"ethNeaPortdisp\") != null && !row.get(\"ethNeaPortdisp\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString()+\"_\"+row.get(\"ethNeaPortdisp\").toString();\n}\nreturn identifier;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class PortIdentifierCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty() && row.get(\"ethNeaPortdisp\") != null && !row.get(\"ethNeaPortdisp\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString()+\"_\"+row.get(\"ethNeaPortdisp\").toString();\n}\nreturn identifier;\n \n}\n}\n",
 "className" : "PortIdentifierCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "referenceParentNetworkElement" : "neA",
 "javaUserCode" : "if(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkNodeLTPReference implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";\n\t\n}\n}\n",
 "className" : "NetworkNodeLTPReference",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "slotNumber" : "ethNeaCardSlot"
 },
 {
 "referenceParentCard" : "neA",
 "javaUserCode" : "String identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){ \n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn identifier;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class CardReferenceCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty()){ \n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString();\n}\nreturn identifier;\n \n}\n}\n",
 "className" : "CardReferenceCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "portNumber" : "ethNeaPortdisp"
 },
 {
 "mediumType" : "ethNeaTransmethod",
 "javaUserCode" : "String type = \"wireless\";\nif(row.get(\"ethNeaTransmethod\") != null && !row.get(\"ethNeaTransmethod\").isEmpty()){\n type = row.get(\"ethNeaTransmethod\").toString();\n}\nreturn type;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class PortMediumType implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nString type = \"wireless\";\nif(row.get(\"ethNeaTransmethod\") != null && !row.get(\"ethNeaTransmethod\").isEmpty()){\n type = row.get(\"ethNeaTransmethod\").toString();\n}\nreturn type;\n\t\n}\n}\n",
 "className" : "PortMediumType",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "name" : "ethNeaPortdisp"
 },
 {
 "bandwidth" : "ethPathCapacity"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "LTP",
 "className" : "SamplePortInfoLoader",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SamplePortInfoLoader",
 "description" : "Containing port information",
 "enabled" : true,
 "createdOn" : ISODate("2022-12-12T16:56:23.117+0000"),
 "modifiedOn" : ISODate("2022-12-12T16:56:23.117+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "pathBasekey",
 "javaUserCode" : "String identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"pathBasekey\") != null && !row.get(\"pathBasekey\").isEmpty() && row.get(\"neB\") != null && !row.get(\"neB\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neB = row.get(\"neB\").toString(); \n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"pathBasekey\").toString()+\"_\"+neB;\n}\nreturn identifier;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class LinkIdentifierCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString identifier = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"pathBasekey\") != null && !row.get(\"pathBasekey\").isEmpty() && row.get(\"neB\") != null && !row.get(\"neB\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neB = row.get(\"neB\").toString(); \n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n identifier = neA+\"_\"+row.get(\"pathBasekey\").toString()+\"_\"+neB;\n}\nreturn identifier;\n \n}\n}\n",
 "className" : "LinkIdentifierCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "type" : "pathType"
 },
 {
 "name" : "neA",
 "javaUserCode" : "String name = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"pathBasekey\") != null && !row.get(\"pathBasekey\").isEmpty() && row.get(\"neB\") != null && !row.get(\"neB\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neB = row.get(\"neB\").toString(); \n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n name = neA+\"_\"+row.get(\"pathBasekey\").toString()+\"_\"+neB;\n}\nreturn name;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class LinkNameCreation implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString name = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"pathBasekey\") != null && !row.get(\"pathBasekey\").isEmpty() && row.get(\"neB\") != null && !row.get(\"neB\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neB = row.get(\"neB\").toString(); \n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n name = neA+\"_\"+row.get(\"pathBasekey\").toString()+\"_\"+neB;\n}\nreturn name;\n \n}\n}\n",
 "className" : "LinkNameCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "aEndLtpId" : "neA",
 "javaUserCode" : "String ltpId = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty() && row.get(\"ethNeaPortdisp\") != null && !row.get(\"ethNeaPortdisp\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n ltpId = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString()+\"_\"+row.get(\"ethNeaPortdisp\").toString();\n}\nreturn ltpId;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class LinkAEndLtpId implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString ltpId = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty() && row.get(\"ethNeaCardSlot\") != null && !row.get(\"ethNeaCardSlot\").isEmpty() && row.get(\"ethNeaPortdisp\") != null && !row.get(\"ethNeaPortdisp\").isEmpty()){\n String neA = row.get(\"neA\").toString(); \n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n ltpId = neA+\"_\"+row.get(\"ethNeaCardSlot\").toString()+\"_\"+row.get(\"ethNeaPortdisp\").toString();\n}\nreturn ltpId;\n \n}\n}\n",
 "className" : "LinkAEndLtpId",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "zEndLtpId" : "neB",
 "javaUserCode" : "String ltpId = \"\";\nif(row.get(\"neB\") != null && !row.get(\"neB\").isEmpty() && row.get(\"ethNebCardSlot\") != null && !row.get(\"ethNebCardSlot\").isEmpty() && row.get(\"ethNebPortdisp\") != null && !row.get(\"ethNebPortdisp\").isEmpty()){\n String neB = row.get(\"neB\").toString(); \n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n ltpId = neB+\"_\"+row.get(\"ethNebCardSlot\").toString()+\"_\"+row.get(\"ethNebPortdisp\").toString();\n}\nreturn ltpId;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class LinkZEndLtpId implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString ltpId = \"\";\nif(row.get(\"neB\") != null && !row.get(\"neB\").isEmpty() && row.get(\"ethNebCardSlot\") != null && !row.get(\"ethNebCardSlot\").isEmpty() && row.get(\"ethNebPortdisp\") != null && !row.get(\"ethNebPortdisp\").isEmpty()){\n String neB = row.get(\"neB\").toString(); \n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n ltpId = neB+\"_\"+row.get(\"ethNebCardSlot\").toString()+\"_\"+row.get(\"ethNebPortdisp\").toString();\n}\nreturn ltpId;\n \n}\n}\n",
 "className" : "LinkZEndLtpId",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "aEndNeId" : "neA"
 },
 {
 "zEndNeId" : "neB"
 },
 {
 "aEndDomain_id" : "neA",
 "javaUserCode" : "List<String> eleIdentifiersRAN = new ArrayList<>();\neleIdentifiersRAN.add(\"79\");//20\neleIdentifiersRAN.add(\"78\");//21\neleIdentifiersRAN.add(\"69\");//30\neleIdentifiersRAN.add(\"68\");//31\neleIdentifiersRAN.add(\"67\");//32\neleIdentifiersRAN.add(\"66\");//33\neleIdentifiersRAN.add(\"64\");//35\neleIdentifiersRAN.add(\"60\");//39\neleIdentifiersRAN.add(\"59\");//40\neleIdentifiersRAN.add(\"58\");//41\neleIdentifiersRAN.add(\"57\");//42\neleIdentifiersRAN.add(\"56\");//43\neleIdentifiersRAN.add(\"54\");//45\neleIdentifiersRAN.add(\"53\");//46\neleIdentifiersRAN.add(\"52\");//47\neleIdentifiersRAN.add(\"51\");//48\neleIdentifiersRAN.add(\"49\");//50\neleIdentifiersRAN.add(\"48\");//51\neleIdentifiersRAN.add(\"06\");//93\nList<String> eleIdentifiersTRANSMISSION = new ArrayList<>();\neleIdentifiersTRANSMISSION.add(\"77\");//22\neleIdentifiersTRANSMISSION.add(\"76\");//23\neleIdentifiersTRANSMISSION.add(\"74\");//25\neleIdentifiersTRANSMISSION.add(\"73\");//26\neleIdentifiersTRANSMISSION.add(\"72\");//27\neleIdentifiersTRANSMISSION.add(\"70\");//29\neleIdentifiersTRANSMISSION.add(\"46\");//53\neleIdentifiersTRANSMISSION.add(\"45\");//54\neleIdentifiersTRANSMISSION.add(\"44\");//55\nList<String> eleIdentifiersIP = new ArrayList<>();\nString aEndDomain = \"CORE\";\neleIdentifiersIP.add(\"20\");//79\neleIdentifiersIP.add(\"19\");//80\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neType = neA.substring(3, 5); \n if(eleIdentifiersRAN.contains(neType)) aEndDomain = \"RAN\";\n else if(eleIdentifiersTRANSMISSION.contains(neType)) aEndDomain = \"TRANSMISSION\"; \n else if(eleIdentifiersIP.contains(neType)) aEndDomain = \"IP\";\n}\nDomain domain = new Domain();\ndomain.setName(aEndDomain);\nreturn domain; ",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Link_AEnd_Domain implements IParserUserField {\n\t\n@Override\n\tpublic Domain getRow(Record row) {\n\t\nList<String> eleIdentifiersRAN = new ArrayList<>();\neleIdentifiersRAN.add(\"79\");//20\neleIdentifiersRAN.add(\"78\");//21\neleIdentifiersRAN.add(\"69\");//30\neleIdentifiersRAN.add(\"68\");//31\neleIdentifiersRAN.add(\"67\");//32\neleIdentifiersRAN.add(\"66\");//33\neleIdentifiersRAN.add(\"64\");//35\neleIdentifiersRAN.add(\"60\");//39\neleIdentifiersRAN.add(\"59\");//40\neleIdentifiersRAN.add(\"58\");//41\neleIdentifiersRAN.add(\"57\");//42\neleIdentifiersRAN.add(\"56\");//43\neleIdentifiersRAN.add(\"54\");//45\neleIdentifiersRAN.add(\"53\");//46\neleIdentifiersRAN.add(\"52\");//47\neleIdentifiersRAN.add(\"51\");//48\neleIdentifiersRAN.add(\"49\");//50\neleIdentifiersRAN.add(\"48\");//51\neleIdentifiersRAN.add(\"06\");//93\nList<String> eleIdentifiersTRANSMISSION = new ArrayList<>();\neleIdentifiersTRANSMISSION.add(\"77\");//22\neleIdentifiersTRANSMISSION.add(\"76\");//23\neleIdentifiersTRANSMISSION.add(\"74\");//25\neleIdentifiersTRANSMISSION.add(\"73\");//26\neleIdentifiersTRANSMISSION.add(\"72\");//27\neleIdentifiersTRANSMISSION.add(\"70\");//29\neleIdentifiersTRANSMISSION.add(\"46\");//53\neleIdentifiersTRANSMISSION.add(\"45\");//54\neleIdentifiersTRANSMISSION.add(\"44\");//55\nList<String> eleIdentifiersIP = new ArrayList<>();\nString aEndDomain = \"CORE\";\neleIdentifiersIP.add(\"20\");//79\neleIdentifiersIP.add(\"19\");//80\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neType = neA.substring(3, 5); \n if(eleIdentifiersRAN.contains(neType)) aEndDomain = \"RAN\";\n else if(eleIdentifiersTRANSMISSION.contains(neType)) aEndDomain = \"TRANSMISSION\"; \n else if(eleIdentifiersIP.contains(neType)) aEndDomain = \"IP\";\n}\nDomain domain = new Domain();\ndomain.setName(aEndDomain);\nreturn domain; \n\t\n}\n}\n",
 "className" : "Link_AEnd_Domain",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "zEndDomain_id" : "neB",
 "javaUserCode" : "List<String> eleIdentifiersRAN = new ArrayList<>();\neleIdentifiersRAN.add(\"79\");//20\neleIdentifiersRAN.add(\"78\");//21\neleIdentifiersRAN.add(\"69\");//30\neleIdentifiersRAN.add(\"68\");//31\neleIdentifiersRAN.add(\"67\");//32\neleIdentifiersRAN.add(\"66\");//33\neleIdentifiersRAN.add(\"64\");//35\neleIdentifiersRAN.add(\"60\");//39\neleIdentifiersRAN.add(\"59\");//40\neleIdentifiersRAN.add(\"58\");//41\neleIdentifiersRAN.add(\"57\");//42\neleIdentifiersRAN.add(\"56\");//43\neleIdentifiersRAN.add(\"54\");//45\neleIdentifiersRAN.add(\"53\");//46\neleIdentifiersRAN.add(\"52\");//47\neleIdentifiersRAN.add(\"51\");//48\neleIdentifiersRAN.add(\"49\");//50\neleIdentifiersRAN.add(\"48\");//51\neleIdentifiersRAN.add(\"06\");//93\nList<String> eleIdentifiersTRANSMISSION = new ArrayList<>();\neleIdentifiersTRANSMISSION.add(\"77\");//22\neleIdentifiersTRANSMISSION.add(\"76\");//23\neleIdentifiersTRANSMISSION.add(\"74\");//25\neleIdentifiersTRANSMISSION.add(\"73\");//26\neleIdentifiersTRANSMISSION.add(\"72\");//27\neleIdentifiersTRANSMISSION.add(\"70\");//29\neleIdentifiersTRANSMISSION.add(\"46\");//53\neleIdentifiersTRANSMISSION.add(\"45\");//54\neleIdentifiersTRANSMISSION.add(\"44\");//55\nList<String> eleIdentifiersIP = new ArrayList<>();\nString zEndDomain = \"CORE\";\neleIdentifiersIP.add(\"20\");//79\neleIdentifiersIP.add(\"19\");//80\nif(row.get(\"neB\") != null && !row.get(\"neB\").isEmpty()){\n String neB = row.get(\"neB\").toString();\n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n String neType = neB.substring(3, 5); \n if(eleIdentifiersRAN.contains(neType)) zEndDomain = \"RAN\";\n else if(eleIdentifiersTRANSMISSION.contains(neType)) zEndDomain = \"TRANSMISSION\"; \n else if(eleIdentifiersIP.contains(neType)) zEndDomain = \"IP\";\n}\nDomain domain = new Domain();\ndomain.setName(zEndDomain);\nreturn domain; ",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Link_ZEnd_Domain implements IParserUserField {\n\t\n@Override\n\tpublic Domain getRow(Record row) {\n\t\nList<String> eleIdentifiersRAN = new ArrayList<>();\neleIdentifiersRAN.add(\"79\");//20\neleIdentifiersRAN.add(\"78\");//21\neleIdentifiersRAN.add(\"69\");//30\neleIdentifiersRAN.add(\"68\");//31\neleIdentifiersRAN.add(\"67\");//32\neleIdentifiersRAN.add(\"66\");//33\neleIdentifiersRAN.add(\"64\");//35\neleIdentifiersRAN.add(\"60\");//39\neleIdentifiersRAN.add(\"59\");//40\neleIdentifiersRAN.add(\"58\");//41\neleIdentifiersRAN.add(\"57\");//42\neleIdentifiersRAN.add(\"56\");//43\neleIdentifiersRAN.add(\"54\");//45\neleIdentifiersRAN.add(\"53\");//46\neleIdentifiersRAN.add(\"52\");//47\neleIdentifiersRAN.add(\"51\");//48\neleIdentifiersRAN.add(\"49\");//50\neleIdentifiersRAN.add(\"48\");//51\neleIdentifiersRAN.add(\"06\");//93\nList<String> eleIdentifiersTRANSMISSION = new ArrayList<>();\neleIdentifiersTRANSMISSION.add(\"77\");//22\neleIdentifiersTRANSMISSION.add(\"76\");//23\neleIdentifiersTRANSMISSION.add(\"74\");//25\neleIdentifiersTRANSMISSION.add(\"73\");//26\neleIdentifiersTRANSMISSION.add(\"72\");//27\neleIdentifiersTRANSMISSION.add(\"70\");//29\neleIdentifiersTRANSMISSION.add(\"46\");//53\neleIdentifiersTRANSMISSION.add(\"45\");//54\neleIdentifiersTRANSMISSION.add(\"44\");//55\nList<String> eleIdentifiersIP = new ArrayList<>();\nString zEndDomain = \"CORE\";\neleIdentifiersIP.add(\"20\");//79\neleIdentifiersIP.add(\"19\");//80\nif(row.get(\"neB\") != null && !row.get(\"neB\").isEmpty()){\n String neB = row.get(\"neB\").toString();\n if(neB.contains(\"_\")) neB = neB.substring(neB.indexOf(\"_\")+1); \n String neType = neB.substring(3, 5); \n if(eleIdentifiersRAN.contains(neType)) zEndDomain = \"RAN\";\n else if(eleIdentifiersTRANSMISSION.contains(neType)) zEndDomain = \"TRANSMISSION\"; \n else if(eleIdentifiersIP.contains(neType)) zEndDomain = \"IP\";\n}\nDomain domain = new Domain();\ndomain.setName(zEndDomain);\nreturn domain; \n\t\n}\n}\n",
 "className" : "Link_ZEnd_Domain",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "adminStatus" : "inUseStatus",
 "javaUserCode" : "String status = \"inactive\";\nif(row.get(\"inUseStatus\") != null && !row.get(\"inUseStatus\").isEmpty() && row.get(\"inUseStatus\").toString().equals(\"USED\")){\n status = \"active\";\n}\nreturn status;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class LinkStatus implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nString status = \"inactive\";\nif(row.get(\"inUseStatus\") != null && !row.get(\"inUseStatus\").isEmpty() && row.get(\"inUseStatus\").toString().equals(\"USED\")){\n status = \"active\";\n}\nreturn status;\n\t\n}\n}\n",
 "className" : "LinkStatus",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "mediumType" : "ethNeaTransmethod",
 "javaUserCode" : "String mediumType = \"wireless\";\nif(row.get(\"ethNeaTransmethod\") != null && !row.get(\"ethNeaTransmethod\").isEmpty()){\n mediumType = row.get(\"ethNeaTransmethod\").toString();\n}\nreturn mediumType;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class LinkMediumType implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString mediumType = \"wireless\";\nif(row.get(\"ethNeaTransmethod\") != null && !row.get(\"ethNeaTransmethod\").isEmpty()){\n mediumType = row.get(\"ethNeaTransmethod\").toString();\n}\nreturn mediumType;\n \n}\n}\n",
 "className" : "LinkMediumType",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "bandwidth" : "ethPathCapacity"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "LINK",
 "className" : "SampleLinkInfoLoader",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleLinkInfoLoader",
 "description" : "Containing link information",
 "enabled" : true,
 "createdOn" : ISODate("2022-12-12T16:59:53.537+0000"),
 "modifiedOn" : ISODate("2022-12-12T16:59:53.537+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "neA",
 "javaUserCode" : "if(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkNodeIdentifierCreation implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";\n\t\n}\n}\n",
 "className" : "NetworkNodeIdentifierCreation",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "domain_id" : "neA",
 "javaUserCode" : "List<String> eleIdentifiersRAN = new ArrayList<>();\neleIdentifiersRAN.add(\"79\");//20\neleIdentifiersRAN.add(\"78\");//21\neleIdentifiersRAN.add(\"69\");//30\neleIdentifiersRAN.add(\"68\");//31\neleIdentifiersRAN.add(\"67\");//32\neleIdentifiersRAN.add(\"66\");//33\neleIdentifiersRAN.add(\"64\");//35\neleIdentifiersRAN.add(\"60\");//39\neleIdentifiersRAN.add(\"59\");//40\neleIdentifiersRAN.add(\"58\");//41\neleIdentifiersRAN.add(\"57\");//42\neleIdentifiersRAN.add(\"56\");//43\neleIdentifiersRAN.add(\"54\");//45\neleIdentifiersRAN.add(\"53\");//46\neleIdentifiersRAN.add(\"52\");//47\neleIdentifiersRAN.add(\"51\");//48\neleIdentifiersRAN.add(\"49\");//50\neleIdentifiersRAN.add(\"48\");//51\neleIdentifiersRAN.add(\"06\");//93\nList<String> eleIdentifiersTRANSMISSION = new ArrayList<>();\neleIdentifiersTRANSMISSION.add(\"77\");//22\neleIdentifiersTRANSMISSION.add(\"76\");//23\neleIdentifiersTRANSMISSION.add(\"74\");//25\neleIdentifiersTRANSMISSION.add(\"73\");//26\neleIdentifiersTRANSMISSION.add(\"72\");//27\neleIdentifiersTRANSMISSION.add(\"70\");//29\neleIdentifiersTRANSMISSION.add(\"46\");//53\neleIdentifiersTRANSMISSION.add(\"45\");//54\neleIdentifiersTRANSMISSION.add(\"44\");//55\nList<String> eleIdentifiersIP = new ArrayList<>();\nString domainName = \"CORE\";\neleIdentifiersIP.add(\"20\");//79\neleIdentifiersIP.add(\"19\");//80\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neType = neA.substring(3, 5); \n if(eleIdentifiersRAN.contains(neType)) domainName = \"RAN\";\n else if(eleIdentifiersTRANSMISSION.contains(neType)) domainName = \"TRANSMISSION\"; \n else if(eleIdentifiersIP.contains(neType)) domainName = \"IP\";\n}\nDomain domain = new Domain();\ndomain.setName(domainName);\nreturn domain;\n ",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkNode_Domain implements IParserUserField {\n\t\n@Override\n\tpublic Domain getRow(Record row) {\n\t\nList<String> eleIdentifiersRAN = new ArrayList<>();\neleIdentifiersRAN.add(\"79\");//20\neleIdentifiersRAN.add(\"78\");//21\neleIdentifiersRAN.add(\"69\");//30\neleIdentifiersRAN.add(\"68\");//31\neleIdentifiersRAN.add(\"67\");//32\neleIdentifiersRAN.add(\"66\");//33\neleIdentifiersRAN.add(\"64\");//35\neleIdentifiersRAN.add(\"60\");//39\neleIdentifiersRAN.add(\"59\");//40\neleIdentifiersRAN.add(\"58\");//41\neleIdentifiersRAN.add(\"57\");//42\neleIdentifiersRAN.add(\"56\");//43\neleIdentifiersRAN.add(\"54\");//45\neleIdentifiersRAN.add(\"53\");//46\neleIdentifiersRAN.add(\"52\");//47\neleIdentifiersRAN.add(\"51\");//48\neleIdentifiersRAN.add(\"49\");//50\neleIdentifiersRAN.add(\"48\");//51\neleIdentifiersRAN.add(\"06\");//93\nList<String> eleIdentifiersTRANSMISSION = new ArrayList<>();\neleIdentifiersTRANSMISSION.add(\"77\");//22\neleIdentifiersTRANSMISSION.add(\"76\");//23\neleIdentifiersTRANSMISSION.add(\"74\");//25\neleIdentifiersTRANSMISSION.add(\"73\");//26\neleIdentifiersTRANSMISSION.add(\"72\");//27\neleIdentifiersTRANSMISSION.add(\"70\");//29\neleIdentifiersTRANSMISSION.add(\"46\");//53\neleIdentifiersTRANSMISSION.add(\"45\");//54\neleIdentifiersTRANSMISSION.add(\"44\");//55\nList<String> eleIdentifiersIP = new ArrayList<>();\nString domainName = \"CORE\";\neleIdentifiersIP.add(\"20\");//79\neleIdentifiersIP.add(\"19\");//80\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neType = neA.substring(3, 5); \n if(eleIdentifiersRAN.contains(neType)) domainName = \"RAN\";\n else if(eleIdentifiersTRANSMISSION.contains(neType)) domainName = \"TRANSMISSION\"; \n else if(eleIdentifiersIP.contains(neType)) domainName = \"IP\";\n}\nDomain domain = new Domain();\ndomain.setName(domainName);\nreturn domain;\n \n\t\n}\n}\n",
 "className" : "NetworkNode_Domain",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "networkElementType" : "neA",
 "javaUserCode" : "String selectedNeType = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neType = neA.substring(3, 5); \n if(\"79\".equals(neType)) selectedNeType=\"BSC\";//20\n else if(\"78\".equals(neType)) selectedNeType=\"RNC\";//21 \n else if(\"77\".equals(neType)) selectedNeType=\"Multiplexer\";//22\n else if(\"76\".equals(neType)) selectedNeType=\"Nortel PCUSN\";//23 \n else if(\"74\".equals(neType)) selectedNeType=\"CC\";//25\n else if(\"73\".equals(neType)) selectedNeType=\"PSAX\";//26 \n else if(\"72\".equals(neType)) selectedNeType=\"Rifu Baugruppentraeger\";//27\n else if(\"70\".equals(neType)) selectedNeType=\"WDM (LWL Equipment)\";//29\n else if(\"69\".equals(neType)) selectedNeType=\"2G Basisstation\";//30\n else if(\"68\".equals(neType)) selectedNeType=\"3G Basisstation\";//31\n else if(\"67\".equals(neType)) selectedNeType=\"LTE\";//32\n else if(\"66\".equals(neType)) selectedNeType=\"mobile NodeB\";//33 \n else if(\"60\".equals(neType)) selectedNeType=\"Repeater\";//39\n else if(\"59\".equals(neType)) selectedNeType=\"2G Mobilfunkrepeater\";//40 \n else if(\"58\".equals(neType)) selectedNeType=\"3G Mobilfunkrepeater\";//41\n else if(\"57\".equals(neType)) selectedNeType=\"2G Mini Mobilfunkrepeater\";//42 \n else if(\"56\".equals(neType)) selectedNeType=\"3G Mini Mobilfunkrepeater\";//43\n else if(\"54\".equals(neType)) selectedNeType=\"GSM Optical Fibre Repeater MasterUnit\";//45 \n else if(\"53\".equals(neType)) selectedNeType=\"GSM Optical Fibre Repeater\";//46\n else if(\"52\".equals(neType)) selectedNeType=\"UMTS Optical Fibre Repeater MasterUnit\";//47 \n else if(\"51\".equals(neType)) selectedNeType=\"UMTS Optical Fibre Repeater\";//48\n else if(\"49\".equals(neType)) selectedNeType=\"2G Rifu Repeater\";//50\n else if(\"48\".equals(neType)) selectedNeType=\"3G Rifu Repeater\";//51\n else if(\"46\".equals(neType)) selectedNeType=\"SDH MW\";//53\n else if(\"45\".equals(neType)) selectedNeType=\"Fibre\";//54\n else if(\"44\".equals(neType)) selectedNeType=\"PDH MW\";//55\n else if(\"20\".equals(neType)) selectedNeType=\"Router\";//79\n else if(\"90\".equals(neType)) selectedNeType=\"STP / SPR\";//09\n else if(\"89\".equals(neType)) selectedNeType=\"MSC\";//10\n else if(\"88\".equals(neType)) selectedNeType=\"UMTS-MSC\";//11\n else if(\"85\".equals(neType)) selectedNeType=\"HLR\"; //14 \n else if(\"83\".equals(neType)) selectedNeType=\"SMSC\";//16\n else if(\"75\".equals(neType)) selectedNeType=\"IMS Plattform\";//24 \n else if(\"32\".equals(neType)) selectedNeType=\"SGSN\";//67\n else if(\"30\".equals(neType)) selectedNeType=\"Combi SGSN\";//69\n else if(\"28\".equals(neType)) selectedNeType=\"Interworking NEs\";//71\n else if(\"23\".equals(neType)) selectedNeType=\"GGSN\";//76\n else if(\"19\".equals(neType)) selectedNeType=\"CE Router\";//80\n else if(\"14\".equals(neType)) selectedNeType=\"MSC Server\";//85\n else if(\"13\".equals(neType)) selectedNeType=\"MGW\";//86\n else if(\"06\".equals(neType)) selectedNeType=\"DCN Equipment/Alarm Converters\";//93\n else if(\"00\".equals(neType)) selectedNeType=\"NTHLR\";//99\n}\nreturn selectedNeType;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkElementTypeSelection implements IParserUserField {\n \n@Override\n public String getRow(Record row) {\n \nString selectedNeType = \"\";\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n String neType = neA.substring(3, 5); \n if(\"79\".equals(neType)) selectedNeType=\"BSC\";//20\n else if(\"78\".equals(neType)) selectedNeType=\"RNC\";//21 \n else if(\"77\".equals(neType)) selectedNeType=\"Multiplexer\";//22\n else if(\"76\".equals(neType)) selectedNeType=\"Nortel PCUSN\";//23 \n else if(\"74\".equals(neType)) selectedNeType=\"CC\";//25\n else if(\"73\".equals(neType)) selectedNeType=\"PSAX\";//26 \n else if(\"72\".equals(neType)) selectedNeType=\"Rifu Baugruppentraeger\";//27\n else if(\"70\".equals(neType)) selectedNeType=\"WDM (LWL Equipment)\";//29\n else if(\"69\".equals(neType)) selectedNeType=\"2G Basisstation\";//30\n else if(\"68\".equals(neType)) selectedNeType=\"3G Basisstation\";//31\n else if(\"67\".equals(neType)) selectedNeType=\"LTE\";//32\n else if(\"66\".equals(neType)) selectedNeType=\"mobile NodeB\";//33 \n else if(\"60\".equals(neType)) selectedNeType=\"Repeater\";//39\n else if(\"59\".equals(neType)) selectedNeType=\"2G Mobilfunkrepeater\";//40 \n else if(\"58\".equals(neType)) selectedNeType=\"3G Mobilfunkrepeater\";//41\n else if(\"57\".equals(neType)) selectedNeType=\"2G Mini Mobilfunkrepeater\";//42 \n else if(\"56\".equals(neType)) selectedNeType=\"3G Mini Mobilfunkrepeater\";//43\n else if(\"54\".equals(neType)) selectedNeType=\"GSM Optical Fibre Repeater MasterUnit\";//45 \n else if(\"53\".equals(neType)) selectedNeType=\"GSM Optical Fibre Repeater\";//46\n else if(\"52\".equals(neType)) selectedNeType=\"UMTS Optical Fibre Repeater MasterUnit\";//47 \n else if(\"51\".equals(neType)) selectedNeType=\"UMTS Optical Fibre Repeater\";//48\n else if(\"49\".equals(neType)) selectedNeType=\"2G Rifu Repeater\";//50\n else if(\"48\".equals(neType)) selectedNeType=\"3G Rifu Repeater\";//51\n else if(\"46\".equals(neType)) selectedNeType=\"SDH MW\";//53\n else if(\"45\".equals(neType)) selectedNeType=\"Fibre\";//54\n else if(\"44\".equals(neType)) selectedNeType=\"PDH MW\";//55\n else if(\"20\".equals(neType)) selectedNeType=\"Router\";//79\n else if(\"90\".equals(neType)) selectedNeType=\"STP / SPR\";//09\n else if(\"89\".equals(neType)) selectedNeType=\"MSC\";//10\n else if(\"88\".equals(neType)) selectedNeType=\"UMTS-MSC\";//11\n else if(\"85\".equals(neType)) selectedNeType=\"HLR\"; //14 \n else if(\"83\".equals(neType)) selectedNeType=\"SMSC\";//16\n else if(\"75\".equals(neType)) selectedNeType=\"IMS Plattform\";//24 \n else if(\"32\".equals(neType)) selectedNeType=\"SGSN\";//67\n else if(\"30\".equals(neType)) selectedNeType=\"Combi SGSN\";//69\n else if(\"28\".equals(neType)) selectedNeType=\"Interworking NEs\";//71\n else if(\"23\".equals(neType)) selectedNeType=\"GGSN\";//76\n else if(\"19\".equals(neType)) selectedNeType=\"CE Router\";//80\n else if(\"14\".equals(neType)) selectedNeType=\"MSC Server\";//85\n else if(\"13\".equals(neType)) selectedNeType=\"MGW\";//86\n else if(\"06\".equals(neType)) selectedNeType=\"DCN Equipment/Alarm Converters\";//93\n else if(\"00\".equals(neType)) selectedNeType=\"NTHLR\";//99\n}\nreturn selectedNeType;\n \n}\n}\n",
 "className" : "NetworkElementTypeSelection",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "officeCode_id" : "siteA"
 },
 {
 "name" : "neA",
 "javaUserCode" : "if(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkNodeName implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";\n\t\n}\n}\n",
 "className" : "NetworkNodeName",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "productName" : "neA",
 "javaUserCode" : "if(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NetworkNodeProductName implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\nif(row.get(\"neA\") != null && !row.get(\"neA\").isEmpty()){\n String neA = row.get(\"neA\").toString();\n if(neA.contains(\"_\")) neA = neA.substring(neA.indexOf(\"_\")+1); \n return neA;\n}\nreturn \"\";\n\t\n}\n}\n",
 "className" : "NetworkNodeProductName",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "NETWORK_NODE",
 "className" : "SampleNetworkNodeInfo",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleNodeInfoLoader",
 "description" : "Containing network element level information",
 "enabled" : true,
 "createdOn" : ISODate("2022-12-12T15:22:45.401+0000"),
 "modifiedOn" : ISODate("2022-12-12T15:22:45.401+0000")});
db.EventFileFormat.insertOne({"parserType" : "JSON",
 "mappingInformation" : {
 "mapping" : [
 {
 "uniqueIdentifier" : "resId"
 },
 {
 "domain_id" : "name",
 "javaUserCode" : "Domain domain = new Domain();\ndomain.setName(\"TRANSMISSION\");\nreturn domain;",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NCET_Domain_Selection implements IParserUserField {\n\t\n@Override\n\tpublic Domain getRow(Record row) {\n\t\nDomain domain = new Domain();\ndomain.setName(\"TRANSMISSION\");\nreturn domain;\n\t\n}\n}\n",
 "className" : "NCET_Domain_Selection",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "networkElementType" : "name",
 "javaUserCode" : "\nreturn \"Microwave\";\n\n",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NCET_NE_Type implements IParserUserField {\n\t\n@Override\n\tpublic String getRow(Record row) {\n\t\n\nreturn \"Microwave\";\n\n\t\n}\n}\n",
 "className" : "NCET_NE_Type",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "officeCode_id" : "location",
 "javaUserCode" : "\nString siteId = \"\";\nif(row.get(\"location\") != null && !row.get(\"location\").isEmpty()){\n siteId = row.get(\"location\").toString();\n} else if(row.get(\"name\") != null && !row.get(\"name\").isEmpty()){\n siteId = row.get(\"name\").toString();\n if(siteId.contains(\"-\")){\n String[] splittedName = siteId.split(\"-\");\n if(splittedName.length >= 2){\n siteId = splittedName[1];\n } else if(siteId.contains(\"_\")){\n String[] splittedNameByUnderscore = siteId.split(\"_\");\n siteId = splittedNameByUnderscore[splittedNameByUnderscore.length-1];\n }\n } \n}\n\nif(!\"\".equals(siteId)){\n OfficeCode officeCode = new OfficeCode();\n officeCode.setName(siteId);\n return officeCode;\n}\nreturn null;\n\n",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NCET_NE_Site_Id implements IParserUserField {\n\t\n@Override\n\tpublic OfficeCode getRow(Record row) {\n\t\n\nString siteId = \"\";\nif(row.get(\"location\") != null && !row.get(\"location\").isEmpty()){\n siteId = row.get(\"location\").toString();\n} else if(row.get(\"name\") != null && !row.get(\"name\").isEmpty()){\n siteId = row.get(\"name\").toString();\n if(siteId.contains(\"-\")){\n String[] splittedName = siteId.split(\"-\");\n if(splittedName.length >= 2){\n siteId = splittedName[1];\n } else if(siteId.contains(\"_\")){\n String[] splittedNameByUnderscore = siteId.split(\"_\");\n siteId = splittedNameByUnderscore[splittedNameByUnderscore.length-1];\n }\n } \n}\n\nif(!\"\".equals(siteId)){\n OfficeCode officeCode = new OfficeCode();\n officeCode.setName(siteId);\n return officeCode;\n}\nreturn null;\n\n\t\n}\n}\n",
 "className" : "NCET_NE_Site_Id",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 },
 {
 "name" : "name"
 },
 {
 "productName" : "productName"
 },
 {
 "macAddress" : "mac"
 },
 {
 "ipAddress" : "ipAddress"
 },
 {
 "deviceName" : "devSysName"
 },
 {
 "vendor" : "manufacturer"
 },
 {
 "softwareVersion" : "softwareVersion"
 },
 {
 "referenceParentSubnet" : "refParentSubnet"
 },
 {
 "location" : "location"
 },
 {
 "serialNumber" : "sn"
 },
 {
 "hardwareVersion" : "hardwareVersion"
 },
 {
 "patchVersion" : "patchVersion"
 },
 {
 "adminStatus" : "adminStatus"
 },
 {
 "custom" : "\nMap<String, Object> info = new HashMap<>();\nif(row.get(\"physicalId\") != null){\n info.put(\"physicalId\", row.get(\"physicalId\"));\n}\nif(row.get(\"container\") != null){\n info.put(\"container\", row.get(\"container\"));\n}\nif(row.get(\"roles\") != null){\n info.put(\"roles\", row.get(\"roles\"));\n}\nif(row.get(\"communicationState\") != null){\n info.put(\"communicationState\", row.get(\"communicationState\"));\n}\nif(row.get(\"remark\") != null){\n info.put(\"remark\", row.get(\"remark\"));\n}\nif(row.get(\"isGateway\") != null){\n info.put(\"isGateway\", row.get(\"isGateway\"));\n}\nif(row.get(\"detailDevTypeName\") != null){\n info.put(\"detailDevTypeName\", row.get(\"detailDevTypeName\"));\n}\nif(row.get(\"isInAcDomain\") != null){\n info.put(\"isInAcDomain\", row.get(\"isInAcDomain\"));\n}\nif(row.get(\"alias\") != null){\n info.put(\"alias\", row.get(\"alias\"));\n}\nif(row.get(\"lsrId\") != null){\n info.put(\"lsrId\", row.get(\"lsrId\"));\n}\nif(row.get(\"oneId\") != null){\n info.put(\"oneId\", row.get(\"oneId\"));\n}\nif(row.get(\"gatewayIdList\") != null){\n info.put(\"gatewayIdList\", row.get(\"gatewayIdList\"));\n}\nif(row.get(\"createTime\") != null){\n info.put(\"createTime\", row.get(\"createTime\"));\n}\nif(row.get(\"preConfig\") != null){\n info.put(\"preConfig\", row.get(\"preConfig\"));\n}\nif(row.get(\"lastModified\") != null){\n info.put(\"lastModified\", row.get(\"lastModified\"));\n}\nif(row.get(\"isVirtual\") != null){\n info.put(\"isVirtual\", row.get(\"isVirtual\"));\n}\nif(row.get(\"enableAson\") != null){\n info.put(\"enableAson\", row.get(\"enableAson\"));\n}\nreturn info;\n\n\n",
 "javaUserCode" : "\nMap<String, Object> info = new HashMap<>();\nif(row.get(\"physicalId\") != null){\n info.put(\"physicalId\", row.get(\"physicalId\"));\n}\nif(row.get(\"container\") != null){\n info.put(\"container\", row.get(\"container\"));\n}\nif(row.get(\"roles\") != null){\n info.put(\"roles\", row.get(\"roles\"));\n}\nif(row.get(\"communicationState\") != null){\n info.put(\"communicationState\", row.get(\"communicationState\"));\n}\nif(row.get(\"remark\") != null){\n info.put(\"remark\", row.get(\"remark\"));\n}\nif(row.get(\"isGateway\") != null){\n info.put(\"isGateway\", row.get(\"isGateway\"));\n}\nif(row.get(\"detailDevTypeName\") != null){\n info.put(\"detailDevTypeName\", row.get(\"detailDevTypeName\"));\n}\nif(row.get(\"isInAcDomain\") != null){\n info.put(\"isInAcDomain\", row.get(\"isInAcDomain\"));\n}\nif(row.get(\"alias\") != null){\n info.put(\"alias\", row.get(\"alias\"));\n}\nif(row.get(\"lsrId\") != null){\n info.put(\"lsrId\", row.get(\"lsrId\"));\n}\nif(row.get(\"oneId\") != null){\n info.put(\"oneId\", row.get(\"oneId\"));\n}\nif(row.get(\"gatewayIdList\") != null){\n info.put(\"gatewayIdList\", row.get(\"gatewayIdList\"));\n}\nif(row.get(\"createTime\") != null){\n info.put(\"createTime\", row.get(\"createTime\"));\n}\nif(row.get(\"preConfig\") != null){\n info.put(\"preConfig\", row.get(\"preConfig\"));\n}\nif(row.get(\"lastModified\") != null){\n info.put(\"lastModified\", row.get(\"lastModified\"));\n}\nif(row.get(\"isVirtual\") != null){\n info.put(\"isVirtual\", row.get(\"isVirtual\"));\n}\nif(row.get(\"enableAson\") != null){\n info.put(\"enableAson\", row.get(\"enableAson\"));\n}\nreturn info;\n\n\n",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.avanseus.model.can.*;\nimport com.mongodb.BasicDBObject;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class NCET_NE_Additional_Info implements IParserUserField {\n\t\n@Override\n\tpublic Map getRow(Record row) {\n\t\n\nMap<String, Object> info = new HashMap<>();\nif(row.get(\"physicalId\") != null){\n info.put(\"physicalId\", row.get(\"physicalId\"));\n}\nif(row.get(\"container\") != null){\n info.put(\"container\", row.get(\"container\"));\n}\nif(row.get(\"roles\") != null){\n info.put(\"roles\", row.get(\"roles\"));\n}\nif(row.get(\"communicationState\") != null){\n info.put(\"communicationState\", row.get(\"communicationState\"));\n}\nif(row.get(\"remark\") != null){\n info.put(\"remark\", row.get(\"remark\"));\n}\nif(row.get(\"isGateway\") != null){\n info.put(\"isGateway\", row.get(\"isGateway\"));\n}\nif(row.get(\"detailDevTypeName\") != null){\n info.put(\"detailDevTypeName\", row.get(\"detailDevTypeName\"));\n}\nif(row.get(\"isInAcDomain\") != null){\n info.put(\"isInAcDomain\", row.get(\"isInAcDomain\"));\n}\nif(row.get(\"alias\") != null){\n info.put(\"alias\", row.get(\"alias\"));\n}\nif(row.get(\"lsrId\") != null){\n info.put(\"lsrId\", row.get(\"lsrId\"));\n}\nif(row.get(\"oneId\") != null){\n info.put(\"oneId\", row.get(\"oneId\"));\n}\nif(row.get(\"gatewayIdList\") != null){\n info.put(\"gatewayIdList\", row.get(\"gatewayIdList\"));\n}\nif(row.get(\"createTime\") != null){\n info.put(\"createTime\", row.get(\"createTime\"));\n}\nif(row.get(\"preConfig\") != null){\n info.put(\"preConfig\", row.get(\"preConfig\"));\n}\nif(row.get(\"lastModified\") != null){\n info.put(\"lastModified\", row.get(\"lastModified\"));\n}\nif(row.get(\"isVirtual\") != null){\n info.put(\"isVirtual\", row.get(\"isVirtual\"));\n}\nif(row.get(\"enableAson\") != null){\n info.put(\"enableAson\", row.get(\"enableAson\"));\n}\nreturn info;\n\n\n\t\n}\n}\n",
 "className" : "NCET_NE_Additional_Info",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 }
]
 },
 "headerPresent" : false,
 "pageSize" : 1000.0,
 "subDataSource" : "NETWORK_NODE",
 "className" : "SampleNetworkNodeOfTransmission",
 "dataSource" : "NETWORK_INVENTORY",
 "name" : "SampleNetworkNodeOfTransmission",
 "description" : "Contains node information of Transmission",
 "enabled" : true,
 "createdOn" : ISODate("2022-10-21T08:50:52.159+0000"),
 "modifiedOn" : ISODate("2022-10-21T08:50:52.159+0000")});

db.EventFileFormat.update({"name" : "TechnicalRootCauseAnalysisMapper"}, {"$set" : {
"parserType" : "XLSX",
 "mappingInformation" : {
 "mapping" : [
 {
 "custom" : "Map<String, String> problemCauseMap = new HashMap<String, String>();\n\nif(row.get(\"Cause\") != null && !row.get(\"Cause\").isEmpty()){ \n problemCauseMap.put(\"CAUSE\", row.get(\"Cause\"));\n}\nif(row.get(\"Fault History\") != null && !row.get(\"Fault History\").isEmpty()){ \n problemCauseMap.put(\"FAULT HISTORY\", row.get(\"Fault History\"));\n}\nif(row.get(\"Possible reason\") != null && !row.get(\"Possible reason\").isEmpty()){ \n problemCauseMap.put(\"POSSIBLE REASON\", row.get(\"Possible reason\"));\n}\nif(row.get(\"NOC Action\") != null && !row.get(\"NOC Action\").isEmpty()){ \n problemCauseMap.put(\"NOC ACTION\", row.get(\"NOC Action\"));\n}\nif(row.get(\"Field Action\") != null && !row.get(\"Field Action\").isEmpty()){ \n problemCauseMap.put(\"FIELD ACTION\", row.get(\"Field Action\"));\n}\n\nreturn problemCauseMap;\n",
 "javaUserCode" : "Map<String, String> problemCauseMap = new HashMap<String, String>();\n\nif(row.get(\"Cause\") != null && !row.get(\"Cause\").isEmpty()){ \n problemCauseMap.put(\"CAUSE\", row.get(\"Cause\"));\n}\nif(row.get(\"Fault History\") != null && !row.get(\"Fault History\").isEmpty()){ \n problemCauseMap.put(\"FAULT HISTORY\", row.get(\"Fault History\"));\n}\nif(row.get(\"Possible reason\") != null && !row.get(\"Possible reason\").isEmpty()){ \n problemCauseMap.put(\"POSSIBLE REASON\", row.get(\"Possible reason\"));\n}\nif(row.get(\"NOC Action\") != null && !row.get(\"NOC Action\").isEmpty()){ \n problemCauseMap.put(\"NOC ACTION\", row.get(\"NOC Action\"));\n}\nif(row.get(\"Field Action\") != null && !row.get(\"Field Action\").isEmpty()){ \n problemCauseMap.put(\"FIELD ACTION\", row.get(\"Field Action\"));\n}\n\nreturn problemCauseMap;\n",
 "generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\nimport com.avanseus.causeStandardization.CauseStandardizationWorkFlow;\npublic class CustomMapperForTechnicalRCA implements IParserUserField {\n \n@Override\n public Map getRow(Record row) {\n \nMap<String, String> problemCauseMap = new HashMap<String, String>();\n\nif(row.get(\"Cause\") != null && !row.get(\"Cause\").isEmpty()){ \n problemCauseMap.put(\"CAUSE\", row.get(\"Cause\"));\n}\nif(row.get(\"Fault History\") != null && !row.get(\"Fault History\").isEmpty()){ \n problemCauseMap.put(\"FAULT HISTORY\", row.get(\"Fault History\"));\n}\nif(row.get(\"Possible reason\") != null && !row.get(\"Possible reason\").isEmpty()){ \n problemCauseMap.put(\"POSSIBLE REASON\", row.get(\"Possible reason\"));\n}\nif(row.get(\"NOC Action\") != null && !row.get(\"NOC Action\").isEmpty()){ \n problemCauseMap.put(\"NOC ACTION\", row.get(\"NOC Action\"));\n}\nif(row.get(\"Field Action\") != null && !row.get(\"Field Action\").isEmpty()){ \n problemCauseMap.put(\"FIELD ACTION\", row.get(\"Field Action\"));\n}\n\nreturn problemCauseMap;\n\n \n}\n}\n",
 "className" : "CustomMapperForTechnicalRCA",
 "pythonCodeVersion" : {

 },
 "javaCodeVersion" : {

 },
 "codeLanguage" : "JAVA",
 "packageName" : "com.avanseus.generated.parserCode"
 }
]
 },
 "headerPresent" : true,
 "pageSize" : 5000.0,
 "className" : "TechnicalRootCauseAnalysisMapper",
 "dataSource" : "OTHERS",
 "name" : "TechnicalRootCauseAnalysisMapper",
 "description" : "TechnicalRootCauseAnalysisMapper",
 "enabled" : false,
 "createdOn" : ISODate("2023-03-21T10:30:38.421+0000"),
 "modifiedOn" : ISODate("2023-03-21T10:30:38.421+0000")
});
Sample Parcer for RealTimeCounter

db.EventFileFormat.insertOne(
{
"_id" : ObjectId("62f473cc711812026d3a8cd5"),
"parserType" : "DELIMITED",
"mappingInformation" : {
"mapping" : [
{
"equipmentType_id" : "2"
},
{
"performanceCounterEquipmentComponent_id" : "2"
},
{
"creationDate" : "0",
"javaUserCode" : "long timeStampInLong = Long.parseLong(row.get(\"0\"));\nDate timeStamp= new Date(timeStampInLong);\nreturn timeStamp;\n\n\n\n\n\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class TimeStamp implements IParserUserField {\n \n@Override\n public Date getRow(Record row) {\n \nlong timeStampInLong = Long.parseLong(row.get(\"0\"));\nDate timeStamp= new Date(timeStampInLong);\nreturn timeStamp;\n\n\n\n\n\n\n\n\n\n\n\n\n \n}\n}\n",
"className" : "TimeStamp",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"value" : "6",
"javaUserCode" : "double value = Double.parseDouble(row.get(\"6\"));\nreturn value;\n\n\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Value implements IParserUserField {\n \n@Override\n public Double getRow(Record row) {\n \ndouble value = Double.parseDouble(row.get(\"6\"));\nreturn value;\n\n\n\n\n\n\n\n\n\n \n}\n}\n",
"className" : "Value",
"pythonCodeVersion" : {	
},
"javaCodeVersion" : {
},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"performanceCounterCause_id" : "1",
"javaUserCode" : "String causeName = row.get(\"1\");\nPerformanceCounterCause performanceCounterCause = new PerformanceCounterCause();\nperformanceCounterCause.setName(causeName);\nperformanceCounterCause.setDomain(\"TRANSPORT\");\nperformanceCounterCause.setNetworkType(\"INTERNATIONAL\");\nreturn performanceCounterCause;\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\nimport com.avanseus.causeStandardization.CauseStandardizationWorkFlow;\npublic class PerformanceCause implements IParserUserField {\n \n@Override\n public PerformanceCounterCause getRow(Record row) {\n \nString causeName = row.get(\"1\");\nPerformanceCounterCause performanceCounterCause = new PerformanceCounterCause();\nperformanceCounterCause.setName(causeName);\nperformanceCounterCause.setDomain(\"TRANSPORT\");\nperformanceCounterCause.setNetworkType(\"INTERNATIONAL\");\nreturn performanceCounterCause;\n \n}\n}\n",
"className" : "PerformanceCause",
"pythonCodeVersion" : {
},
"javaCodeVersion" : {
},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"officeCode_id" : "4",
"javaUserCode" : "OfficeCode officeCode=new OfficeCode();\nString equipmentName = row.get(\"2\");\n switch (equipmentName){\n case \"Carrier1;53380;AB\":\n case \"Carrier1;54589;AB\":\n case \"Carrier5;53678;AB\":\n officeCode.setName(\"BGL_BCLKA_CDR_I_H5499\");\n break;\n case \"Carrier5;54580;BA\":\n case \"Carrier6;54588;BA\":\n case \"Carrier8;131076;BA\":\n officeCode.setName(\"AAG_BCLKA_DEE_P_E98319\");\n break;\n case \"Carrier8;54620;BA\":\n case \"Carrier10;204805;BA\":\n case \"Carrier10;53907;AB\":\n officeCode.setName(\"BEL_SPM_902_N1201_B\");\n break;\n case \"Carrier11;54266;AB\":\n case \"Carrier12;54551;BA\":\n case \"Carrier13;54409;AB\":\n officeCode.setName(\"BDX_BCLKA_BDL_P_E90199\");\n break;\n default:break;\n }\nreturn officeCode;\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Office implements IParserUserField {\n \n@Override\n public OfficeCode getRow(Record row) {\n \nOfficeCode officeCode=new OfficeCode();\nString equipmentName = row.get(\"2\");\n switch (equipmentName){\n case \"Carrier1;53380;AB\":\n case \"Carrier1;54589;AB\":\n case \"Carrier5;53678;AB\":\n officeCode.setName(\"BGL_BCLKA_CDR_I_H5499\");\n break;\n case \"Carrier5;54580;BA\":\n case \"Carrier6;54588;BA\":\n case \"Carrier8;131076;BA\":\n officeCode.setName(\"AAG_BCLKA_DEE_P_E98319\");\n break;\n case \"Carrier8;54620;BA\":\n case \"Carrier10;204805;BA\":\n case \"Carrier10;53907;AB\":\n officeCode.setName(\"BEL_SPM_902_N1201_B\");\n break;\n case \"Carrier11;54266;AB\":\n case \"Carrier12;54551;BA\":\n case \"Carrier13;54409;AB\":\n officeCode.setName(\"BDX_BCLKA_BDL_P_E90199\");\n break;\n default:break;\n }\nreturn officeCode;\n\n \n}\n}\n",
"className" : "Office",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"nation_id" : "4",
"javaUserCode" : "Nation nation=new Nation();\nnation.setName(\"India\");\nreturn nation;\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Nat implements IParserUserField {\n \n@Override\n public Nation getRow(Record row) {\n \nNation nation=new Nation();\nnation.setName(\"India\");\nreturn nation;\n\n\n\n\n\n\n\n \n}\n}\n",
"className" : "Nat",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"zone_id" : "4",
"javaUserCode" : "Zone zone=new Zone();\nzone.setName(\"BANGALORE\");\nreturn zone;\n\n\n\n\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class ZoneTest implements IParserUserField {\n \n@Override\n public Zone getRow(Record row) {\n \nZone zone=new Zone();\nzone.setName(\"BANGALORE\");\nreturn zone;\n\n\n\n\n\n\n\n\n\n\n\n \n}\n}\n",
"className" : "ZoneTest",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"equipment_id" : "4"
},
{
"division_id" : "4",
"javaUserCode" : "Division div=new Division();\ndiv.setName(\"Karnataka\");\nreturn div;\n\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Div implements IParserUserField {\n \n@Override\n public Division getRow(Record row) {\n \nDivision div=new Division();\ndiv.setName(\"Karnataka\");\nreturn div;\n\n\n\n\n\n\n\n\n\n \n}\n}\n",
"className" : "Div",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"region_id" : "4",
"javaUserCode" : "Region reg=new Region();\nreg.setName(\"South Karnataka\");\nreturn reg;\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class Reg implements IParserUserField {\n \n@Override\n public Region getRow(Record row) {\n \nRegion reg=new Region();\nreg.setName(\"South Karnataka\");\nreturn reg;\n\n\n\n\n\n\n\n \n}\n}\n",
"className" : "Reg",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
},
{
"thresholdConfiguration_id" : "1",
"javaUserCode" : "String causeName = row.get(\"1\");\nThresholdConfiguration thresholdConfiguration=new ThresholdConfiguration();\nthresholdConfiguration.setName(causeName);\nthresholdConfiguration.setParameter(causeName);\nreturn thresholdConfiguration;\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"generatedCode" : "import com.avanseus.helper.Record;\nimport com.avanseus.model.config.threshold.*;\nimport com.avanseus.eventFileFormat.IParserUserField;\nimport java.util.Map;\nimport java.util.List;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.*;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\n\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class TConfiguration implements IParserUserField {\n\t\n@Override\n\tpublic ThresholdConfiguration getRow(Record row) {\n\t\nString causeName = row.get(\"1\");\nThresholdConfiguration thresholdConfiguration=new ThresholdConfiguration();\nthresholdConfiguration.setName(causeName);\nthresholdConfiguration.setParameter(causeName);\nreturn thresholdConfiguration;\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\t\n}\n}\n",
"className" : "TConfiguration",
"pythonCodeVersion" : {

},
"javaCodeVersion" : {

},
"codeLanguage" : "JAVA",
"packageName" : "com.avanseus.generated.parserCode"
}
]
},
"headerPresent" : false,
"pageSize" : 1000,
"subDataSource" : "REALTIME_COUNTER",
"className" : "PromotheusNew",
"delimiter" : ",",
"escapeChar" : "|",
"dataSource" : "PERFORMANCE_COUNTER",
"name" : "PromotheusNew",
"description" : "New Mapper For PromotheusData loader",
"enabled" : true,
"createdOn" : ISODate("2023-03-14T06:28:57.067Z"),
"modifiedOn" : ISODate("2023-03-14T06:28:57.067Z")
})

[bookmark: _Toc132990847]2.7 Changes related to ROE Screen
ROE Sheet configurations related changes
Added patGroupTypes field to the existing RoeSheetConfiguration.
	db.RoeSheetConfiguration.find().forEach(function(doc) {
 var objectId = doc._id;
 db.RoeSheetConfiguration.update({"_id":objectId},{$set:{"patGroupTypes" : ["EQUIPMENT"]}})}
)

Added extra template for roe sheet configuration

	db.RoeConfigTemplate.insert({
"templateName" : "roePatGenerationTemplate",
"description" : "Template to fetch the group identifier",
"templateCodeSnippet" : "import com.avanseus.helper.Record;\nimport java.util.List;\nimport com.avanseus.roenew.IPatGroupIdentifierProvider;\nimport java.util.Map;\nimport java.util.List;\nimport java.text.ParseException;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.Priority;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\nimport com.avanseus.roe.util.*;\npublic class $className implements IPatGroupIdentifierProvider {\n\t\n@Override\n\tpublic String getPatGroupIdentifier(DBObject prediction){\n\t\n$javacode\n\t\n}\n}\n"
})

ROE Policy Configuration related changes
To set codeLanguage as JAVA for the roeParameters of existing policies in ROEPolicyConfiguration.
	db.RoePolicyConfiguration.find().forEach(function(doc) {
 var objectId = doc._id;
 var newRoeParametersArray = doc.roeParameters;
 var isParameterValueComplexCodeExists = false;
 var isLimitLogicComplexCodeExists = false;
 for(var i=0; i < doc.roeParameters.length; i++) {
 if(doc.roeParameters[i].codeClassname_parameterValue != undefined) {
 newRoeParametersArray[i].codeLanguage_parameterValue = "JAVA";
 isParameterValueComplexCodeExists = true;
 }
 if(doc.roeParameters[i].codeClassname_roeLimit != undefined) {
 newRoeParametersArray[i].codeLanguage_roeLimit = "JAVA";
 isLimitLogicComplexCodeExists = true;
 }
 }
 if(isParameterValueComplexCodeExists || isLimitLogicComplexCodeExists) {
 db.RoePolicyConfiguration.updateOne({"_id":objectId},{"$set": {"roeParameters":newRoeParametersArray}})
 }
})

To set codeLanguage as JAVA for the roeParameters of default policies in DefaultPolicyConfiguration.

	db.DefaultPolicyConfiguration.find().forEach(function(doc) {
 var objectId = doc._id;
 var newRoeParametersArray = doc.roeParameters;
 var isParameterValueComplexCodeExists = false;
 var isLimitLogicComplexCodeExists = false;
 for(var i=0; i < doc.roeParameters.length; i++) {
 if(doc.roeParameters[i].codeClassname_parameterValue != undefined) {
 newRoeParametersArray[i].codeLanguage_parameterValue = "JAVA";
 isParameterValueComplexCodeExists = true;
 }
 if(doc.roeParameters[i].codeClassname_roeLimit != undefined) {
 newRoeParametersArray[i].codeLanguage_roeLimit = "JAVA";
 isLimitLogicComplexCodeExists = true;
 }
 }
 if(isParameterValueComplexCodeExists || isLimitLogicComplexCodeExists) {
 db.DefaultPolicyConfiguration.updateOne({"_id":objectId},{"$set": {"roeParameters":newRoeParametersArray}})
 }
})

To set codeLanguage as JAVA for the parameters that have default code in DefaultComplexCodeROE

	db.DefaultComplexCodeROE.find().forEach(function(doc) {
 var objectId = doc._id;
 db.DefaultComplexCodeROE.updateOne({"_id":objectId},{"$set":{"codeLanguage_parameterValue":"JAVA"}})
})

[bookmark: _Toc132990848]2.8 Changes related to Filter Configuration Screen
Adding predictionType field to PredictionFilterTemplate Code
	db.PredictionFilterTemplate.find({"predictionType":{"$exists":false}}).forEach(function(doc) {
 var objectId = doc._id;
 db.PredictionFilterTemplate.update({"_id":objectId},{"$set":{"predictionType":"ALARM"}})
})

Inserting default templet for KPI in Filter Configuration
	db.PredictionFilterTemplate.insert({	
 "templateName" : "KPIRuleDiscoveryTemplate",
"templateDescription" : "KPIRuleDiscoveryTemplate",
"templateCodeSnippet" : "import java.util.*;\nimport com.avanseus.filter.*;\nimport com.avanseus.filter.registry.*;\nimport com.avanseus.filter.registry.advanced.*;\nimport com.avanseus.model.can.Pair;\nimport com.avanseus.logger.ApplicationLogger;\nimport com.avanseus.manager.ThresholdConfigurationManager;\nimport com.avanseus.model.can.*;\nimport java.io.File;\nimport java.util.Arrays;\nimport com.avanseus.nn.IRuleDiscoverer;\nimport com.avanseus.nn.IFaultKeyProvider;\nimport com.avanseus.predictionFilter.IPredictionFilter;\n\npublic class $className implements IPredictionFilter {\n private IPairRegistryStore<Integer> iPairRegistryStore;\n private IAdvancedPairRegistryStore<Double> advancedPairRegistryStore;\n private ApplicationLogger logger;\n private ThresholdConfigurationManager thresholdConfigurationManager;\n private IFaultKeyProvider ruleDiscoverer;\n\n public $className(File inputFile) {\n PairRegistryStoreFactory pairRegistryStoreFactory = new PairRegistryStoreFactory();\n iPairRegistryStore = pairRegistryStoreFactory.getPairRegistryStore(PredictionType.KPI, inputFile);\n advancedPairRegistryStore = pairRegistryStoreFactory.getAdvancedPairRegistryStore(PredictionType.KPI, inputFile);\n logger = ApplicationLogger.getLogger(this.getClass());\n thresholdConfigurationManager = new ThresholdConfigurationManager();\n ruleDiscoverer = new KPIFaultKeyProvider();\n }\n\n private boolean isMinimumNumberOfBreachFound(String sequence, Pair pair) {\n int occurrences = 0;\n int[] instanceArray = Arrays.stream(sequence.split(\" \")).filter(val -> !val.isEmpty()).mapToInt(Integer::parseInt).toArray();\n for (int i = instanceArray.length - 1; i >= 0 && i >= (instanceArray.length - pair.getWindowSize()); i--) {\n if (instanceArray[i] == 1) occurrences++;\n }\n return occurrences >= pair.getBitMatch();\n }\n\n public boolean applyFilter(String predictionFilterKey, String instance) {\n boolean result = false;\n $javacode\n return result;\n }\n}",
"predictionType" : "KPI"})

Adding code language and predictionType to PredictionFilter table
	db.PredictionFilter.find({"predictionType":{"$exists":false}}).forEach(function(doc){
var objectId = doc._id;
db.PredictionFilter.update({"_id":objectId},{"$set":{"predictionType":"ALARM","codeLanguage" : "JAVA"}})
})

Inserting default Prediction filter rules for KPI
	db.PredictionFilter.insert({
"inputCode" : "DiscoveryBase discoveryBase = DiscoveryBase.PERFORMANCE_COUNTER_CAUSE;\n String[] lineInstance = ruleDiscoverer.getFaultKeyAndInstanceByDiscoveryBase(instance, discoveryBase);\n Pair pair = iPairRegistryStore.getFaultBestPairByDiscoveryBase(discoveryBase, predictionFilterKey, 0, 0);\n if (pair != null) {\n result = !isMinimumNumberOfBreachFound(lineInstance[1], pair);\nSystem.out.println(\"===\");\n System.out.println(instance);\nSystem.out.println(predictionFilterKey+\"==>\"+pair+\"====>\"+lineInstance[1]+\"==>\"+result);\n }",
 "name" : "KPIDiscoverRule",
 "className" : "KPIDiscoverRule",
 "description" : "KPI DiscoverRule",
 "enabled" : false,
 "predictionType" : "KPI",
 "codeLanguage" : "JAVA"})

db.PredictionFilter.insert({	"inputCode" : "DiscoveryBase discoveryBase = DiscoveryBase.PERFORMANCECOUNTERCAUSE_EQUIPMENTCOMPONENT;\n String[] lineInstance = ruleDiscoverer.getFaultKeyAndInstanceByDiscoveryBase(instance, discoveryBase);\n Pair pair = iPairRegistryStore.getFaultBestPairByDiscoveryBase(discoveryBase, predictionFilterKey, 0, 1);\n if (pair != null) {\n result = !isMinimumNumberOfBreachFound(lineInstance[1], pair);\n }",
"name" : "KPIEquipmentDiscoverRule",
"className" : "KPIEquipmentDiscoverRule",
"description" : "KPI Equipment DiscoverRule",
"enabled" : false,
"predictionType" : "KPI",
"codeLanguage" : "JAVA"})

db.PredictionFilter.insert({
"inputCode" : "DiscoveryBase discoveryBase = DiscoveryBase.PERFORMANCE_COUNTER_CAUSE;\n String[] lineInstance = ruleDiscoverer.getFaultKeyAndInstanceByDiscoveryBase(instance, discoveryBase);\n Pair pair = advancedPairRegistryStore.getFaultBestPairByDiscoveryBase(discoveryBase, predictionFilterKey,lineInstance[1], 0.0, 0.0);\n if (pair != null) {\n result = !isMinimumNumberOfBreachFound(lineInstance[1], pair);\n }",
"name" : "AdvancedKpiDiscoverRule",
"className" : "AdvancedKpiDiscoverRule",
"description" : "AdvancedKpiDiscoverRule DiscoverRule",
"enabled" : false,
"modifiedOn" : ISODate("2020-04-22T12:52:07.561+05:30"),
"predictionType" : "KPI","codeLanguage" : "JAVA"})

Adding PredictionType field and changing the faultTypeSequence in PredictionFilterRule table.

	var faultTypeSequenceJSON = {"Cause":"CAUSE","EquipmentComponent":"EQUIPMENT_COMPONENT"};
db.PredictionFilterRule.find({"predictionType":{"$exists":false}}).forEach(function(doc) {
 var objectId = doc._id;
 var faultTypeSequence = doc.faultTypeSequence;
 for(var i=0;i<doc.faultTypeSequence.length;i++) {
 faultTypeSequence[i] = faultTypeSequenceJSON[faultTypeSequence[i]]
 }
 db.PredictionFilterRule.updateOne({"_id":objectId},{"$set":{"faultTypeSequence": faultTypeSequence,"predictionType":"ALARM"}})
})

Adding predictionType to PredictionKeyFilter table

	db.PredictionKeyFilter.find({"predictionType":{"$exists":false}}).forEach(function(doc) {
 var objectId = doc._id;
 db.PredictionKeyFilter.update({"_id":objectId},{"$set":{"predictionType":"ALARM"}})
})

[bookmark: _Toc132990849]2.9 Changes related to KPI Management Screen
Adding domain, networktype, causeCategory, realtimeStreamPrediction, serviceImpact and unit fileds to existing PerformanceCounterCauseTable
NOTE: Specify the domain name and network type correctly before running the query.
	db.PerformanceCounterCause.find().forEach(function(doc) {
 var objectId = doc._id;
 db.PerformanceCounterCause.update({"_id":objectId},{"$set":{
 "causeCategory" : "INFRA",
"domain" : "ACCESS",
"modified" : true,
"networkType" : "4G",
"realtimeStreamPrediction" : false,
"serviceImpact" : false,
"thresholdType" : "MAXIMUM",
"unit" : "count"}})
})

[bookmark: _Toc132990850]2.10 Changes related to Cause Management Screen
New field equipmentComponentType added in the cause object
	db.Cause.update({"equipmentComponentType" : {"$exists" : false} }, {"$set" : {"equipmentComponentType" : "OTHERS"}}, {multi : true});

[bookmark: _Toc132990851]2.11 Changes related to Predicted Fault screen
New field equipmentComponentType added in the cause object of PredictedFault Table
	db.PredictedFault.update({"cause.equipmentComponentType" : {"$exists" : false}}, {"$set" : {"cause.equipmentComponentType" : "OTHERS"}}, {multi : true});

[bookmark: _Toc132990852]2.12 Changes related to Topology Discovery screen

	db.DomainIcon.updateOne({"domain" : "Transmission Node"},{$set:{"domain" : "TRANSMISSION"}});
db.DomainIcon.updateOne({"domain" : "Access Node"},{$set:{"domain" : "RAN"}});
db.DomainIcon.updateOne({"domain" : "IP Node"},{$set:{"domain" : "IP"}});

[bookmark: _Toc132990853]2.13 Changes related to Data Collection Configuration
Adding port number for "SFTP" interface
	db.FileCollectionConfiguration.find({}).forEach(function(doc){
 var objectId=doc._id;
 var fileInterface=doc.fileInterface
 if(fileInterface == "SFTP"){
 db.FileCollectionConfiguration.updateOne({"_id":objectId},
 {$set: { "port": "22"}});
 }
});

Adding cronPattern and realTimePrediction fields and update the interface "KAFKA" to "SECURE_KAFKA", execute the below script
	db.FileCollectionConfiguration.find({}).forEach(function(doc){
 var objectId=doc._id;
 var fileInterface=doc.fileInterface
 if(fileInterface == "KAFKA"){
 db.FileCollectionConfiguration.updateOne({"_id":objectId},
 {$set: { "fileInterface": "SECURE_KAFKA", "cronPattern": "0 0 0 * * ?", "realTimePrediction": false}});
 }
});

Sample data collector for Prometheus Interface

	db.FileCollectionConfiguration.insertOne({
"_id" : ObjectId("61656d7d2a0ede133d9601ff"),
"fileInterface" : "PROMETHEUS",
"ipAddress" : " http://prometheus.istio-system.svc.cluster.local:9090/api/v1/query",
"status" : "INACTIVE",
"mapper_id" : "62f473cc711812026d3a8cd5",
"metrics" : "acd_s,gmr_nb,ner,ser",
"realTimePrediction" : false,
"cronPattern" : "0/5 * * ? * *",
"name" : "Prometheuscollector",
"description" : "Prometheuscollector"
})

[bookmark: _Toc132990854]2.14 Changes related to Data Collection Audit
To add the subDataSource field for "PERFORMANCE_COUNTER" dataSource, execute the below script on ParserAudit table.
	db.ParserAudit.find({}).forEach(function(doc){
 var objectId=doc._id;
 var dataSource=doc.dataSource
 if(dataSource == "PERFORMANCE_COUNTER"){
 db.ParserAudit.updateOne({"_id":objectId},
 {$set: { "subDataSource": "PERFORMANCE_COUNTER"}});
 }
});

To update the discarded records categories, run the below script.
	var discardedKeysMapping =
 {
 "PREPROCESSOR_REJECTED" : "PARSER001",
 "POSTPROCESSOR_REJECTED" : "PARSER002",
 "NO_PRIORITY" : "PARSER003",
 "NO_OFFICE_CODE" : "PARSER004",
 "NO_EQUIPMENT" : "PARSER005",
 "NO_EQUIPMENT_COMPONENT" : "PARSER006",
 "NO_NATION" : "PARSER007",
 "NO_ZONE" : "PARSER008",
 "NO_CAUSE" : "PARSER009",
 "NO_CREATION_DATE" : "PARSER010",
 "NO_CATEGORY" : "PARSER011",
 "NO_EQUIPMENT_VENDOR" : "PARSER012",
 "NO_TICKET_ID" : "PARSER013",
 "NO_TICKET_CREATION_DATE" : "PARSER014",
 "NO_EQUIPMENT_TYPE" : "PARSER015",
 "NO_PERFORMANCE_COUNTER_EQUIPMENT_COMPONENT" : "PARSER016",
 "NO_PERFORMANCE_CAUSE" : "PARSER017",
 "NO_SOURCE" : "PARSER021",
 "NO_DESCRIPTION" : "PARSER022",
 "NO_TIME" : "PARSER023",
 "NO_WORK_ORDER_ID" : "PARSER024",
 "NO_TRAVEL_COUNT" : "PARSER025",
 "OTHERS" : "PARSER026",
 "ERROR" : "PARSER072"
 }
db.ParserAudit.find({}).forEach(function(doc){
 var objectId=doc._id;
 var discardedRecordsCategory=doc.discardedRecordsCategory
 var newDiscardedRecordsCategory= {}
 if(discardedRecordsCategory != undefined && discardedRecordsCategory != null){
 var discardedRecordsLength = Object.keys(discardedRecordsCategory).length
 if(discardedRecordsLength > 0){
 for(var i=0; i<discardedRecordsLength; i++){
 var key = Object.keys(discardedRecordsCategory)[i]
 var value = discardedRecordsCategory[key]
 var newKey = discardedKeysMapping[key]
 newDiscardedRecordsCategory[newKey] = value
 }
 db.ParserAudit.updateOne({"_id":objectId},
 {$set: { "discardedRecordsCategory": newDiscardedRecordsCategory}});
 }
 }
});

[bookmark: _Toc132990855]2.15 Changes related to Config Entry
Removing existing Config entries that are not required now
	db.Config.find({}).forEach(function(doc){
 var objectId = doc._id;
 if (doc.key === "KPI Level") {
 db.Config.remove({"key":"KPI Level"});
 }
 if (doc.key === "healthIndexOffset") {
 db.Config.remove({"key":"healthIndexOffset"});
 }
 if (doc.key === "healthIndexScalingFactor") {
 db.Config.remove({"key":"healthIndexScalingFactor"});
 }
});
db.Config.deleteOne({"group": "Ticket Correlation Prediction", "key": "manualTicketPredictionLevel" })
db.Config.deleteOne({"group":"General configuration", "key":"topPredictedFaults"})
db.Config.remove({"group" : "Cause", "key" : "priority"});
db.Config.remove({"group" : "Cause", "key" : "serviceAffecting"});

Updating Config Entries
	db.Config.updateMany({"group" : "Cross-domain correlation/Cluster configuration"},{$unset:{"group":1}});

db.Config.find({}).forEach(function(doc){
 var objectId = doc._id;
 if (doc.key === "predictionType") {
 var groupName = "Prediction Type";
 var type= "MULTI_SELECT";
 db.Config.updateOne({_id: objectId,"key":"predictionType"},{$set:{"group":groupName,"type":type}});
 }

 if (doc.key === "pmCounterSlotDurationInMins") {
 var key = "pmCounterSlotDuration";
 var title= "Data Availability";
 var value= "1440";
 var displayOrder= NumberInt(1);
 db.Config.updateOne({_id: objectId,"key":"pmCounterSlotDurationInMins"},
 {$set:{"key":key,"value":value,"title":title,"displayOrder":displayOrder}});
 }

 if (doc.key === "healthIndexWarningLevel") {
 var groupName = "Performance Counter";
 var key= "SUPERPOSED_healthIndexWarningLevel";
 var displayLabel= "config.SUPERPOSED_healthIndexWarningLevel";
 db.Config.updateOne({_id: objectId,"key":"healthIndexWarningLevel"},
 {$set:{"group":groupName,"key":key,"displayLabel":displayLabel}});
 }

 if (doc.key === "healthIndexCriticalLevel") {
 var groupName = "Performance Counter";
 var key= "SUPERPOSED_healthIndexCriticalLevel";
 var displayLabel= "config.SUPERPOSED_healthIndexCriticalLevel";
 db.Config.updateOne({_id: objectId,"key":"healthIndexCriticalLevel"},
 {$set:{"group":groupName,"key":key,"displayLabel":displayLabel}});
 }
});

db.Config.updateOne(
 {"group":"Advance prediction", key: "advancedSkipDays"},
 {$set: { "min": 1.0, "max": 6.0, value: "2"}
 });

db.Config.updateOne(
 {"group":"Matching configuration", key: "predictionMatchSlots"},
 {$set: { "min": 2.0, "max": 3.0, value: "2" }
 });

db.Config.updateOne(
 {"group":"Matching configuration", key: "totalMatchDays"},
 {$set: { "min": 0.0, "max": 90.0, value: "45"}
 });

db.Config.update({"group" : "Cause", "key" : "causeCategory"}, {"$set" : {"value" : "HARDWARE,INFRA,TRANSMISSION,CONFIGURATION,EXTERNAL,MEDIA,INVENTORY"}});

// domain-networkType key updated
db.Config.remove({"group" : "Cause", "key" : "domain-networkType"});
db.Config.insertOne({"key" : "domain-networkType", "value" : "[{\"domain\":\"RAN\",\"networkType\":[\"2G\",\"3G\",\"4G\",\"5G\"]},{\"domain\":\"TRANSMISSION\",\"networkType\":[\"MICROWAVE\"]},{\"domain\":\"IP\",\"networkType\":[\"IP-CORE\"]},{\"domain\":\"CORE\",\"networkType\":[\"PS-CORE\",\"CS-CORE\",\"CLOUD-CORE\",\"IMS-CORE\"]},{\"domain\":\"TRANSPORT\",\"networkType\":[\"CEN\",\"MPLS\",\"OPTICS\"]},{\"domain\":\"WIRED-LINE\",\"networkType\":[\"FTTH\",\"FTTX\",\"ADSL\",\"VDSL\",\"HFC\"]},{\"domain\":\"OTHERS\",\"networkType\":[\"OTHERS\"]}]"});

//Removed Cross-domain from Advance configuration screen
db.Config.updateMany({"group" : "Cross-domain correlation/Cluster configuration"},{$unset:{"group":1}});

[bookmark: _Toc132990856]2.16 Changes related to Office Code table
Update Lat-Lng in OfficeCode (if not present) considering EquipmentComponent Lat-Lng
	db.OfficeCode.find({'latitude' : { '$exists' : false }, 'longitude': {'$exists' : false }}).forEach(function(doc){
 var objectId=doc._id;
 var officeCodeObjectId = objectId.valueOf();
 var equipmentComponents = db.Alarm.distinct("aggregator.equipmentComponent", {"officeCode_id" : officeCodeObjectId})
 for(var i=0; i<equipmentComponents.length; i++){
 var equipmentComponentDoc = db.EquipmentComponent.findOne({"name": equipmentComponents[i], 'latitude' : { '$exists' : true }, 'longitude': {'$exists' : true }})
 if(equipmentComponentDoc != undefined && equipmentComponentDoc != null){
 db.OfficeCode.updateOne({"_id":objectId},{$set:{"latitude": equipmentComponentDoc.latitude, "longitude": equipmentComponentDoc.longitude}});
 break;
 }
 }
});

Validate office code Lat-Lng & update in PredictedFault.
Find the "Lat/Long Validation Configuration" section in the Advanced Configuration module. Choose the appropriate locality to validate Lat-Lng and schedule "Lat/Long Configuration Cron" properly. Update the configuration.
[bookmark: _Toc132990857]2.17 Changes related to EquipmentToEquipmentComponent table
For the key “Parent”, specify the correct “networktype” before running the query.
For example, the “networkType” is “International”, select “parent” as “International”.

	db.PerformanceCounterEquipmentComponent.find({}).forEach(function(item) {
var name = item.name;
db.EquipmentToEquipmentComponent.insert({"child":name,"identifier" : "EquipmentComponent", "parent" : "International"});
});

[bookmark: _Toc132990858]3. Addition of new config entries in Config collection
Add the below config entries in the Config collection. These config entries are related to:
[bookmark: _Toc132990859]3.1 Site Management screen (To monitor file upload completion status)
	db.Config.insert({
      "key" : "siteManagementFileUploadCompleteStatus",
      "value" : true
});

[bookmark: _Toc132990860]3.2 Fault Trace Generation
	db.Config.insert({
 "key" : "faultTraceCron",
 "value" : "0 0 0 * * ?",
 "modules" : "CAN",
 "title" : "Cron",
 "type" : "cron",
 "group" : "Fault Trace Generation",
 "displayOrder" : 4,
 "displayLabel" : "config.faultTraceCron"
});

db.Config.insert({
 "key": "maxFaultTraceCount",
 "value": "5",
 "modules": "CAN",
 "title": "Max Fault Trace Count",
 "max": 100,
 "min": 0,
 "type": "Int",
 "group": "Fault Trace Generation",
 "displayOrder": 3,
 "displayLabel": "config.maxFaultTraceCount"
});

db.Config.insert({
 "key": "faultTraceMaxDayMultiplier",
 "value": "4",
 "modules": "CAN",
 "title": "Max Day Multiplier",
 "max": 100,
 "min": 0,
 "type": "Int",
 "group": "Fault Trace Generation",
 "displayOrder": 2,
 "displayLabel": "config.faultTraceMaxDayMultiplier"
});

db.Config.insert({
 "key": "faultTraceHistoryDays",
 "value": "4",
 "modules": "CAN",
 "title": "History Days",
 "max": 100,
 "min": 0,
 "type": "Int",
 "group": "Fault Trace Generation",
 "displayOrder": 1,
 "displayLabel": "config.faultTraceHistoryDays"
});

[bookmark: _Toc132990861]3.3 Ticket Correlation Prediction
	db.Config.insert({
 "key" : "autoTicketCorrelationEntity",
 "value" : "EQUIPMENT_COMPONENT",
 "title" : "Auto Correlation Entity Type",
 "group" : "Ticket Correlation Prediction",
 "type" : "DropDown",
 "modules" : "CAN",
 "displayOrder" : 1,
 "displayLabel" : "config.autoTicketCorrelationEntity",
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.TicketCorrelationEntityTypeEquipmentOption",
 "valueTitle" : "Equipment",
 "actualValue" : "EQUIPMENT"
 },
 {
 "valueDisplayLabel" : "config.TicketCorrelationEntityTypeEquipmentComponentOption",
 "valueTitle" : "Equipment Component",
 "actualValue" : "EQUIPMENT_COMPONENT"
 },
 {
 "valueDisplayLabel" : "config.TicketCorrelationEntityTypeOfficeCodeOption",
 "valueTitle" : "Office Code",
 "actualValue" : "OFFICE_CODE"
 }
]
});

db.Config.insert({
 "key" : "manualTicketCorrelationEntity",
 "value" : "OFFICE_CODE",
 "title" : "Manual Correlation Entity Type",
 "group" : "Ticket Correlation Prediction",
 "type" : "DropDown",
 "modules" : "CAN",
 "displayOrder" : 1,
 "displayLabel" : "config.manualTicketCorrelationEntity",
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.TicketCorrelationEntityTypeEquipmentOption",
 "valueTitle" : "Equipment",
 "actualValue" : "EQUIPMENT"
 },
 {
 "valueDisplayLabel" : "config.TicketCorrelationEntityTypeEquipmentComponentOption",
 "valueTitle" : "Equipment Component",
 "actualValue" : "EQUIPMENT_COMPONENT"
 },
 {
 "valueDisplayLabel" : "config.TicketCorrelationEntityTypeOfficeCodeOption",
 "valueTitle" : "Office Code",
 "actualValue" : "OFFICE_CODE"
 }
]
});

db.Config.insert({
 "key" : "autoTicketCorrelationLevel",
 "value" : "CAUSE_CATEGORY",
 "title" : "Auto Correlation Level",
 "group" : "Ticket Correlation Prediction",
 "type" : "DropDown",
 "modules" : "CAN",
 "displayOrder" : 2,
 "displayLabel" : "config.autoTicketCorrelationLevel",
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.TicketCorrelationLevelCauseCategoryOption",
 "valueTitle" : "Cause Category",
 "actualValue" : "CAUSE_CATEGORY"
 },
 {
 "valueDisplayLabel" : "config.TicketCorrelationLevelCauseOption",
 "valueTitle" : "Cause",
 "actualValue" : "CAUSE"
 }
]
});

db.Config.insert({
 "key" : "manualTicketCorrelationLevel",
 "value" : "CAUSE_CATEGORY",
 "title" : "Manual Correlation Level",
 "group" : "Ticket Correlation Prediction",
 "type" : "DropDown",
 "modules" : "CAN",
 "displayOrder" : 2,
 "displayLabel" : "config.manualTicketCorrelationLevel",
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.TicketCorrelationLevelCauseCategoryOption",
 "valueTitle" : "Cause Category",
 "actualValue" : "CAUSE_CATEGORY"
 },
 {
 "valueDisplayLabel" : "config.TicketCorrelationLevelCauseOption",
 "valueTitle" : "Cause",
 "actualValue" : "CAUSE"
 }
]
});

[bookmark: _Toc132990862]3.4 Weather Configuration
To add a Config entry to check if weather report is required along with the prediction report.
	db.Config.insert({
 "key" : "isWeatherReportRequired",
 "value" : "false"
})

[bookmark: _Toc132990863]3.5 Office Code Related
To add a Config entry to configure the locality for the lat-long validation.

	db.Config.insert({
 "key" : "latLongValidationConfigurationLocality",
 "title" : "Lat Long Validation Configuration",
 "value" : "Nation",
 "modules" : "CAN",
 "type" : "RADIO",
 "group" : "Lat Long Validation Configuration",
 "displayOrder" : 1,
 "displayLabel" : "predictiveFaultAnalytics.locality",
 "modifiedOn" : ISODate("2022-04-13T10:45:22.335Z"),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "predictiveFaultAnalysis.nation",
 "valueTitle" : "nation",
 "actualValue" : "Nation"
 },
 {
 "valueDisplayLabel" : "predictiveFaultAnalysis.zone",
 "valueTitle" : "zone",
 "actualValue" : "Zone"
 }
]
})

To add a Config entry to configure the cron for the lat-long validation job.

	db.Config.insert({
 "key" : "latLongValidationConfigurationCron",
 "value" : "Today;16:09;19800000",
 "title" : "Lat Long Validation Cron",
 "group" : "Lat Long Validation Configuration",
 "type" : "Job",
 "displayOrder" : 2,
 "modules" : "CAN",
 "modifiedOn" : ISODate("2022-04-13T10:43:21.472Z"),
 "info" : "Job should be scheduled 10 mins from the time update button is clicked",
 "timeStamp" : "1649846340868",
 "isCronConfigured" : false
})

[bookmark: _Toc132990864]3.6 Cause Management
	db.Config.insertOne({"key" : "causePriority", "value" : "false"});
db.Config.insertOne({"key" : "serviceImpact", "value" : "false"});
db.Config.insertOne({"key" : "equipmentComponentType", "value" : "NETWORK_ELEMENT,CARD,PORT,LINK,OTHERS"});

[bookmark: _Toc132990865]3.7 Cross-Domain Correlation
 ParentChild Correlation
	db.Config.insertOne({
 "key" : "parentCausesLimit",
 "value" : NumberInt(7),
 "modules" : "CAN",
 "group" : "ParentChild Correlation"
});
db.Config.insertOne({
 "key" : "similarParentCausesMargin",
 "value" : 0.4,
 "modules" : "CAN",
 "group" : "ParentChild Correlation"
});
db.Config.insertOne({
 "key" : "similarChildCausesMargin",
 "value" : 0.5,
 "modules" : "CAN",
 "group" : "ParentChild Correlation"
});
db.Config.insertOne({
 "key" : "duplicateParentCausesMargin",
 "value" : 0.6,
 "modules" : "CAN",
 "group" : "ParentChild Correlation"
});
db.Config.insertOne({
 "key" : "duplicateChildCausesMargin",
 "value" : 0.7,
 "modules" : "CAN",
 "group" : "ParentChild Correlation"
});

Topology Discovery
	db.Config.insertOne({
 "key":"clusterCombination",
 "value":"equipment"
});

Topology Stitiching
	db.Config.insertOne({"key" : "traversalConfiguration",
"valuePossibilities" : [
{
"TRANSMISSION" : {
"hop" : NumberInt(3),
"min" : NumberInt(1),
"max" : NumberInt(5)
},
"IP" : {
"hop" : NumberInt(0),
"min" : NumberInt(0),
"max" : NumberInt(8)
},
"CORE" : {
"hop" : NumberInt(1),
"min" : NumberInt(1),
"max" : NumberInt(3)
}
}
],
"modules" : "CAN"});
db.Config.insertOne({"key" : "batchSizeForFindingPath", "value" : NumberInt(50)});
db.Config.insertOne({"key" : "batchSizeForFindingNeighbours", "value" : NumberInt(100)});
db.Config.insertOne({"key" : "crossDomainConnectingAttributes",
"valuePossibilities" : [
{
"Office Code" : "officeCode_id"
},
{
"MAC Address" : "macAddress"
}
],
"modules" : "CAN"});
db.Config.insertOne({"key" : "discoveredTopologyPathCron", "value" : "0 0 0 * * ?", "type" : "cron", "modules" : "CAN"});
db.Config.insertOne({"key" : "terminationCondition",
"valuePossibilities" : [
{
"endDomains" : [
"IP",
"CORE"
],
"conditions" : [
"last_Network_Node_Of_Network_Element_Type",
"custom"
],
"last_Network_Node_Of_Network_Element_Type" : [
"Router"
],
"value" : {
"selectedDomain" : "IP",
"selectedCondition" : "last_Network_Node_Of_Network_Element_Type",
"type" : "Router"
}
}
],
"modules" : "CAN"});
db.Config.insertOne({"key" : "crossDomainConfiguredConnections",
"valuePossibilities" : [
{
"RAN||TRANSMISSION" : "RAN||||Office Code<--->TRANSMISSION||||Office Code",
"TRANSMISSION||IP" : "TRANSMISSION||||Office Code<--->IP||||Office Code",
"RAN||IP" : "RAN||||Office Code<--->IP||||Office Code"
}
],
"modules" : "CAN"});
db.Config.insertOne({"key" : "schematicView",
"value" : "",
"valuePossibilities" : [
{
"configuredDomain1" : "RAN",
"nodeForEachRowOfDomain1" : NumberInt(1)
},
{
"configuredDomain2" : "TRANSMISSION",
"nodeForEachRowOfDomain2" : NumberInt(2)
},
{
"configuredDomain3" : "IP",
"nodeForEachRowOfDomain3" : NumberInt(4)
},
{
"configuredDomain4" : "CORE",
"nodeForEachRowOfDomain4" : NumberInt(1)
}
],
"modules" : "CAN"});
db.Config.insertOne({"key" : "networkInventoryBackupCreationCron", "value" : "0 0 0 * * ?", "type" : "cron", "modules" : "CAN"});
db.Config.insertOne({"key" : "faultKeysOnClustering",
"elementKeys" : [
"RECOMMENDED RCA",
"RECOMMENDED NOC ACTION",
"RECOMMENDED FIELD ACTION"
],
"modules" : "CAN"});

[bookmark: _Toc132990866]3.8 Performance Counter

	db.Config.insert({
 "key" : "pmcounter-domain-networkType",
 "value" : "[{\"domain\":\"CORE\",\"networkType\":[\"PS-CORE\",\"CS-CORE\"]},{\"domain\":\"ACCESS\",\"networkType\":[\"2G\",\"3G\",\"4G\"]},{\"domain\":\"TRANSPORT\",\"networkType\":[\"CEN\",\"MPLS\",\"OPTICS\",\"INTERNATIONAL\"]},{\"domain\":\"E2E\",\"networkType\":[\"RAN\",\"TRANSPORT\",\"CORE\"]},{\"domain\":\"WIRED-LINE\",\"networkType\":[\"FTTH\",\"FTTX\",\"ADSL\",\"VDSL\",\"HFC\"]}]",
 "title" : "Network Type",
 "modules" : "CAN",
 "type" : "String",
 "group" : "Performance Counter",
 "displayLabel" : "config.domain-networkType",
 "fieldName" : "domain-networkType",
 "tableName" : "Cause",
 "modifiedOn" : ISODate("2021-02-04T14:23:54.566+0000")
});

db.Config.insert({
 "key" : "networkTypeLevels",
 "value" : "[{\"2G\":[\"BSC\",\"BTS\"]},{\"3G\":[\"RNS\",\"nodeB\"]},{\"4G\":[\"enodeb\"]},{\"5G\":[\"gnodeb\"]},{\"PS-core\":[]},{\"CS-core\":[]},{\"CEN\":[]},{\"MPLS\":[]},{\"INTERNATIONAL\":[]}]"
});

db.Config.insert({
 "key" : "isDataAvailableInSecs",
 "value" : "false",
 "modules" : "CAN",
 "type" : "RADIO",
 "title" : "Data Availability",
 "displayLabel" : "config.isDataAvailableInSecs",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2022-05-27T07:13:16.157+0000"),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.dataAvailabilityInMins",
 "valueTitle" : "Data availability in mins",
 "actualValue" : "Mins"
 },
 {
 "valueDisplayLabel" : "config.dataAvailabilityInSecs",
 "valueTitle" : "Data availability in secs",
 "actualValue" : "Secs"
 }
]
});

db.Config.insert({
 "key" : "KPI_isDataAvailableInSecs",
 "value" : "false",
 "modules" : "CAN",
 "type" : "RADIO",
 "title" : "Data Availability",
 "displayLabel" : "config.KPI_isDataAvailableInSecs",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2022-08-25T05:33:52.187+0000"),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.dataAvailabilityInMins",
 "valueTitle" : "Data availability in mins",
 "actualValue" : "Mins"
 },
 {
 "valueDisplayLabel" : "config.dataAvailabilityInSecs",
 "valueTitle" : "Data availability in secs",
 "actualValue" : "Secs"
 }
]
});

db.Config.insert({
 "key" : "KPI_pmCounterSlotDuration",
 "value" : "1440",
 "modules" : "CAN",
 "type" : "String",
 "title" : "Data Availability",
 "displayLabel" : "config.KPI_pmCounterSlotDurationInMins",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2022-08-25T05:33:52.180+0000")
});

db.Config.insert({
 "key" : "KPI_pmCounterSlotLength",
 "value" : "1",
 "modules" : "CAN",
 "max" : NumberInt(300),
 "min" : NumberInt(1),
 "title" : "PM Slot Length",
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(4),
 "displayLabel" : "config.KPI_pmCounterSlotLength",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.190+0000")
});

db.Config.insert({
 "key" : "KPI_pmCounterBitSequenceLength",
 "title" : "PM Bit Sequence Length",
 "value" : "200",
 "modules" : "CAN",
 "max" : NumberInt(500),
 "min" : NumberInt(50),
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(4),
 "displayLabel" : "config.KPI_pmCounterBitSequenceLength",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.187+0000")
});

db.Config.insert({
 "key" : "KPI_pmCounterPredictionInterval",
 "value" : "6",
 "modules" : "CAN",
 "title" : "PM Prediction interval",
 "max" : NumberInt(14),
 "min" : NumberInt(1),
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.KPI_pmCounterPredictionInterval",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.190+0000")
});

db.Config.insert({
 "key" : "RTSP_isDataAvailableInSecs",
 "value" : "true",
 "modules" : "CAN",
 "type" : "RADIO",
 "title" : "Data Availability",
 "displayLabel" : "config.RTSP_isDataAvailableInSecs",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2022-08-25T05:33:52.185+0000"),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.dataAvailabilityInMins",
 "valueTitle" : "Data availability in mins",
 "actualValue" : "Mins"
 },
 {
 "valueDisplayLabel" : "config.dataAvailabilityInSecs",
 "valueTitle" : "Data availability in secs",
 "actualValue" : "Secs"
 }
]
});

db.Config.insert({
 "key" : "RTSP_pmCounterSlotLength",
 "value" : "1",
 "modules" : "CAN",
 "max" : NumberInt(300),
 "min" : NumberInt(1),
 "title" : "PM Slot Length",
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(4),
 "displayLabel" : "config.RTSP_pmCounterSlotLength",
 "modifiedOn" : ISODate("2022-08-17T09:15:04.161+0000")
});

db.Config.insert({
 "key" : "RTSP_pmCounterBitSequenceLength",
 "title" : "PM Bit Sequence Length",
 "value" : "99",
 "modules" : "CAN",
 "max" : NumberInt(500),
 "min" : NumberInt(50),
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(4),
 "displayLabel" : "config.RTSP_pmCounterBitSequenceLength",
 "modifiedOn" : ISODate("2022-10-14T07:21:02.092+0000")
});

db.Config.insert({
 "key" : "RTSP_pmCounterPredictionInterval",
 "value" : "6",
 "modules" : "CAN",
 "title" : "PM Prediction interval",
 "max" : NumberInt(14),
 "min" : NumberInt(1),
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.RTSP_pmCounterPredictionInterval",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.188+0000")
});

db.Config.insert({
 "key" : "RTSP_pmCounterSlotDuration",
 "value" : "20",
 "modules" : "CAN",
 "type" : "String",
 "title" : "Data Availability",
 "displayLabel" : "config.RTSP_pmCounterSlotDurationInMins",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2022-11-02T02:44:46.378+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_isDataAvailableInSecs",
 "value" : "true",
 "modules" : "CAN",
 "type" : "RADIO",
 "title" : "Data Availability",
 "displayLabel" : "config.SUPERPOSED_isDataAvailableInSecs",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2023-01-24T13:51:37.529+0000"),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.dataAvailabilityInMins",
 "valueTitle" : "Data availability in mins",
 "actualValue" : "Mins"
 },
 {
 "valueDisplayLabel" : "config.dataAvailabilityInSecs",
 "valueTitle" : "Data availability in secs",
 "actualValue" : "Secs"
 }
]
});

db.Config.insert({
 "key" : "SUPERPOSED_pmCounterSlotLength",
 "value" : "1",
 "modules" : "CAN",
 "max" : NumberInt(300),
 "min" : NumberInt(1),
 "title" : "PM Slot Length",
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(4),
 "displayLabel" : "config.SUPERPOSED_pmCounterSlotLength",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.191+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_pmCounterBitSequenceLength",
 "title" : "PM Bit Sequence Length",
 "value" : "200",
 "modules" : "CAN",
 "max" : NumberInt(500),
 "min" : NumberInt(50),
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(4),
 "displayLabel" : "config.SUPERPOSED_pmCounterBitSequenceLength",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.186+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_pmCounterPredictionInterval",
 "value" : "6",
 "modules" : "CAN",
 "title" : "PM Prediction interval",
 "max" : NumberInt(14),
 "min" : NumberInt(1),
 "type" : "Int",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.SUPERPOSED_pmCounterPredictionInterval",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.189+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_pmCounterSlotDuration",
 "value" : "1440",
 "modules" : "CAN",
 "type" : "String",
 "title" : "Data Availability",
 "displayLabel" : "config.SUPERPOSED_pmCounterSlotDurationInMins",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(1),
 "modifiedOn" : ISODate("2022-08-25T05:33:52.190+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_healthIndex.cron",
 "value" : "0 0 4 * * ?",
 "title" : "Cron",
 "group" : "Performance Counter",
 "type" : "cron",
 "modules" : "CAN",
 "displayOrder" : NumberInt(2),
 "modifiedOn" : ISODate("2022-06-10T10:53:57.080+0000")
});

db.Config.insert({
 "key" : "KPI_thresholdBreach.cron",
 "value" : "0 0 2 * * ?",
 "title" : "Cron",
 "group" : "Performance Counter",
 "type" : "cron",
 "modules" : "CAN",
 "displayOrder" : NumberInt(2),
 "modifiedOn" : ISODate("2022-06-07T12:38:39.800+0000")
});

db.Config.insert({
 "key" : "KPI_defaultRepresentation",
 "title" : "Default representation",
 "value" : "TABULAR_VIEW",
 "modules" : "CAN",
 "group" : "Performance Counter",
 "type" : "RADIO",
 "displayLabel" : "config.KPI_defaultRepresentation",
 "displayOrder" : NumberInt(5),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.Map",
 "valueTitle" : "Map",
 "actualValue" : "MAP"
 },
 {
 "valueDisplayLabel" : "config.Tabular",
 "valueTitle" : "Tabular",
 "actualValue" : "TABULAR_VIEW"
 }
],
 "modifiedOn" : ISODate("2023-01-12T07:49:44.971+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_defaultRepresentation",
 "title" : "Default representation",
 "value" : "TABULAR_VIEW",
 "modules" : "CAN",
 "group" : "Performance Counter",
 "type" : "RADIO",
 "displayLabel" : "config.SUPERPOSED_defaultRepresentation",
 "displayOrder" : NumberInt(5),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.Map",
 "valueTitle" : "Map",
 "actualValue" : "MAP"
 },
 {
 "valueDisplayLabel" : "config.Tabular",
 "valueTitle" : "Tabular",
 "actualValue" : "TABULAR_VIEW"
 }
],
 "modifiedOn" : ISODate("2023-01-12T07:49:44.972+0000")
});

db.Config.insert({
 "key" : "RTSP_defaultRepresentation",
 "title" : "Default representation",
 "value" : "TABULAR_VIEW",
 "modules" : "CAN",
 "group" : "Performance Counter",
 "type" : "RADIO",
 "displayLabel" : "config.RTSP_defaultRepresentation",
 "displayOrder" : NumberInt(5),
 "valuePossibilities" : [
 {
 "valueDisplayLabel" : "config.Map",
 "valueTitle" : "Map",
 "actualValue" : "MAP"
 },
 {
 "valueDisplayLabel" : "config.Tabular",
 "valueTitle" : "Tabular",
 "actualValue" : "TABULAR_VIEW"
 }
],
 "modifiedOn" : ISODate("2023-01-12T07:49:44.971+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_networkType",
 "value" : "4G",
 "modules" : "CAN",
 "type" : "DropDown",
 "title" : "Network Type",
 "displayLabel" : "config.SUPERPOSED_networkType",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(8),
 "modifiedOn" : ISODate("2023-01-12T07:49:44.970+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_domain",
 "value" : "ACCESS",
 "modules" : "CAN",
 "type" : "DropDown",
 "title" : "Domain",
 "displayLabel" : "config.SUPERPOSED_domain",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(7),
 "modifiedOn" : ISODate("2022-09-15T05:25:59.462+0000")
});

db.Config.insert({
 "key" : "RTSP_networkType",
 "value" : "International",
 "modules" : "CAN",
 "type" : "DropDown",
 "title" : "Network Type",
 "displayLabel" : "config.RTSP_networkType",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(8),
 "modifiedOn" : ISODate("2022-09-15T08:42:05.252+0000")
});

db.Config.insert({
 "key" : "RTSP_domain",
 "value" : "Transport",
 "modules" : "CAN",
 "type" : "DropDown",
 "title" : "Domain",
 "displayLabel" : "config.RTSP_domain",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(7),
 "modifiedOn" : ISODate("2022-09-15T16:23:12.567+0000")
});

db.Config.insert({
 "key" : "KPI_networkType",
 "value" : "4G",
 "modules" : "CAN",
 "type" : "DropDown",
 "title" : "Network Type",
 "displayLabel" : "config.KPI_networkType",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(8),
 "modifiedOn" : ISODate("2023-01-12T07:49:44.971+0000")
});

db.Config.insert({
 "key" : "KPI_domain",
 "value" : "ACCESS",
 "modules" : "CAN",
 "type" : "DropDown",
 "title" : "Domain",
 "displayLabel" : "config.KPI_domain",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(7),
 "modifiedOn" : ISODate("2022-09-15T09:37:30.474+0000")
});

db.Config.insert({
 "key" : "KPI_retainability-worst-cells",
 "value" : "[{\"networkType\":\"2G\",\"KPI\":\"TCH drop call ratio, after re-est\",\"standardDeviationThreshold\":\"0.01\"},{\"networkType\":\"3G\",\"KPI\":\"Dropped_Calls_3G\",\"standardDeviationThreshold\":\"0.01\"},{\"networkType\":\"4G\",\"KPI\":\"dropped_calls_4g\",\"standardDeviationThreshold\":\"0.01\"}]",
 "title" : "Retainability Worst Cells",
 "modules" : "CAN",
 "type" : "String",
 "group" : "Performance Counter",
 "displayLabel" : "config.KPI_retainability-worst-cells",
 "fieldName" : "name",
 "tableName" : "PerformanceCounterCause",
 "modifiedOn" : ISODate("2022-11-08T13:24:51.360+0000")
});

db.Config.insert({
 "key" : "KPI_quality-worst-cells",
 "value" : "[{\"networkType\":\"2G\",\"KPI\":\"DL GPRS erlangs\",\"standardDeviationThreshold\":\"0.01\"},{\"networkType\":\"3G\",\"KPI\":\"Act HS-DSCH end usr thp\",\"standardDeviationThreshold\":\"0.01\"},{\"networkType\":\"4G\",\"KPI\":\"DL tput\",\"standardDeviationThreshold\":\"0.01\"}]",
 "title" : "Quality Worst Cells",
 "modules" : "CAN",
 "type" : "String",
 "group" : "Performance Counter",
 "displayLabel" : "config.KPI_quality-worst-cells",
 "fieldName" : "name",
 "tableName" : "PerformanceCounterCause",
 "modifiedOn" : ISODate("2022-11-08T13:24:51.311+0000")
});

db.Config.insert({
 "key" : "KPI_accessibility-worst-cells",
 "value" : "[{\"networkType\":\"2G\",\"KPI\":\"CSSR\",\"standardDeviationThreshold\":\"0.01\"},{\"networkType\":\"3G\",\"KPI\":\"CSSR All\",\"standardDeviationThreshold\":\"0.01\"},{\"networkType\":\"4G\",\"KPI\":\"Data RB stp SR\",\"standardDeviationThreshold\":\"0.01\"}]",
 "modules" : "CAN",
 "title" : "Accessibility Worst Cells",
 "type" : "String",
 "group" : "Performance Counter",
 "displayLabel" : "config.KPI_accessibility-worst-cells",
 "fieldName" : "name",
 "tableName" : "PerformanceCounterCause",
 "modifiedOn" : ISODate("2022-11-08T13:24:51.360+0000")
});

db.Config.insert({
 "key" : "KPI_worstCellsLimit",
 "value" : "100",
 "modules" : "CAN",
 "title" : "Worst Cells Limit",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(10),
 "displayLabel" : "config.KPI_worstCellsLimit",
 "modifiedOn" : ISODate("2022-11-08T06:56:44.011+0000")
});

db.Config.insert({
 "key" : "KPI_archivalThresholdSlots",
 "value" : "600",
 "modules" : "CAN",
 "title" : "Archival Threshold Slots",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(9),
 "displayLabel" : "config.KPI_archivalThresholdSlots",
 "modifiedOn" : ISODate("2022-10-18T11:07:17.995+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_archivalThresholdSlots",
 "value" : "600",
 "modules" : "CAN",
 "title" : "Archival Threshold Slots",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(9),
 "displayLabel" : "config.SUPERPOSED_archivalThresholdSlots",
 "modifiedOn" : ISODate("2022-10-19T10:43:24.300+0000")
});

db.Config.insert({
 "key" : "RTSP_archivalThresholdSlots",
 "value" : "600",
 "modules" : "CAN",
 "title" : "Archival Threshold Slots",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(9),
 "displayLabel" : "config.RTSP_archivalThresholdSlots",
 "modifiedOn" : ISODate("2022-08-25T05:33:52.191+0000")
});

db.Config.insert({
 "key" : "KPI_archivalPmCounterThresholdSlots",
 "value" : "700",
 "modules" : "CAN",
 "title" : "Archival PMCounter Threshold Slots",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(10),
 "displayLabel" : "config.KPI_archivalPmCounterThresholdSlots",
 "modifiedOn" : ISODate("2022-10-14T08:32:18.139+0000")
});

db.Config.insert({
 "key" : "SUPERPOSED_archivalPmCounterThresholdSlots",
 "value" : "700",
 "modules" : "CAN",
 "title" : "Archival PmCounter Threshold Slots",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(10),
 "displayLabel" : "config.SUPERPOSED_archivalPmCounterThresholdSlots",
 "modifiedOn" : ISODate("2022-10-14T08:32:18.139+0000")
});

db.Config.insert({
 "key" : "RTSP_archivalRtCounterThresholdSlots",
 "value" : "700",
 "modules" : "CAN",
 "title" : "Archival RtCounter Threshold Slots",
 "type" : "String",
 "group" : "Performance Counter",
 "displayOrder" : NumberInt(10),
 "displayLabel" : "config.RTSP_archivalRtCounterThresholdSlots",
 "modifiedOn" : ISODate("2022-10-14T08:32:18.139+0000")
});

db.Config.insert({
 "key" : "KPI_archivalCron",
 "value" : "0 52 19 19 10 ? *",
 "group" : "Performance Counter",
 "title" : "Archive Cron",
 "modules" : "CAN",
 "type" : "cron",
 "displayOrder" : NumberInt(9),
 "modifiedOn" : ISODate("2022-10-19T19:51:21.754+0000")

});

db.Config.insert({
 "key" : "SUPERPOSED_archivalCron",
 "value" : "0 59 18 19 10 ? *",
 "group" : "Performance Counter",
 "title" : "Archive Cron",
 "modules" : "CAN",
 "type" : "cron",
 "displayOrder" : NumberInt(9),
 "modifiedOn" : ISODate("2022-10-19T18:57:22.600+0000")
});

db.Config.insert({
 "key" : "RTSP_archivalCron",
 "value" : "0 58 15 19 10 ? *",
 "group" : "Performance Counter",
 "title" : "Archive Cron",
 "modules" : "CAN",
 "type" : "cron",
 "displayOrder" : NumberInt(9),
 "modifiedOn" : ISODate("2022-10-19T15:56:45.295+0000")
});

db.Config.insert({
 "key" : "realTimePredictionLatestDateBatchSize",
 "value" : "480",
 "modules" : "CAN",
 "type" : "Int",
 "modifiedOn" : ISODate("2020-04-15T08:34:37.031+0000")
});

db.Config.insert({
 "key" : "backtrackPeriodThreshold",
 "value" : "24"
});

db.Config.insert({
 "key" : "noOfPreviousBacktrackPeriod",
 "value" : "60"
});

[bookmark: _Toc132990867]3.9 CX Prediction Screen
	db.Config.insertOne({
 "key" : "AutoStartCall&RepairAfterAlarm",
 "value" : "true",
 "modules" : "CAN",
 "type" : "boolean"
});
db.Config.insertOne({
 "key" : "MinCallLikeLiHoodValue",
 "title" : "Default callLikeLiHood to be used in UI filters",
 "value" : "0",
 "modules" : "CAN",
 "max" : NumberInt(100),
 "min" : NumberInt(0),
 "type" : "Int"
});
db.Config.insertOne({
 "key" : "MinRepairLikeLiHoodValue",
 "title" : "Default repairLikeLiHood to be used in UI filters",
 "value" : "0",
 "modules" : "CAN",
 "max" : NumberInt(100),
 "min" : NumberInt(0),
 "type" : "Int"
});
db.Config.insertOne({
 "key" : "CXInventoryDataType",
 "value" : "Integer",
 "note": "these types are only applied to rack,shelf,card,port,onu (olt, splitters are always treated as String)",

 "valuePossibilities" : [
 {
 "valueTitle" : "CX Inventory data present in Integer",
 "actualValue" : "Integer"
 },
 {
 "valueTitle" : "CX Inventory data present in Decimal",
 "actualValue" : "Double"
 },
 {
 "valueTitle" : "CX Inventory data present in String",
 "actualValue" : "String"
 }
]
});
db.Config.insertOne({
 "key" : "BCXP_REST_ENDPOINT",
 "value" : "http://bcxp:6057/"
});
db.Config.insertOne({
 "key" : "CustomerExperienceEquipmentComponentFormat",
 "title" : "equipment component regex format",
 "note" : "all 6 values inside <> are mandatory and has to be in the same sequence and must and should have any characters in between them",
 "value" : "<olt_id>//<rack_id>//<shelf_id>//<card_id>//<port_id>//<onu_id>"
});
db.Config.insertOne({
 "key" : "CustomerExperienceIncludeCustomerDetails",
 "value" : "{_id:0,\"Customer Id\":\"$customerId\",\"Customer Name\":\"$name\",\"Address\":\"$address\",Telephone:\"$telephone\",\"Customer Premises Equipment (CPE)\":\"$CPE\",\"Installation Date\":\"$installationDate\"}",
"title":"fields in Customer table to be displayed in Customer Exp screen Modal"
});
db.Config.insertOne({
 "key" : "Call&RepairPredictionCallRepairHistory",
 "title" : "Call & Repair History to be Considerd in days",
 "value" : "90"
});
db.Config.insertOne({
 "key" : "Call&RepairPredictionAlarmHistory",
 "title" : "Alarm History to be Considerd in days",
 "value" : "30"
});
db.Config.insertOne({
 "key" : "Call&RepairPredictionBreachHistory",
 "title" : "Onu Breach History to be Considerd in days",
 "description" : "It will calculate number of breaches with in given days",
 "value" : "30"
});
db.Config.insertOne({
 "key" : "Call&RepairPredictedImpactCritical&MajorThreshold",
 "title" : "below or equal to this % value, predicted Impact is MAJOR and above this % it is CRITICAL",
 "value" : "30"
});
db.Config.insertOne({
 "key" : "Call&RepairPredictedImpactMinorThreshold",
 "title" : "below or equal to this % value predicted Impact is given as Minor",
 "value" : "10"
});
db.Config.insertOne({
 "key":"clusterCombination",
 "value":"equipment"
});

NOTE: To View the CX prediction screen in the UI please run the BCXP module. Refer the MOP for AWS or on-premise installation with NFS storage for more Information.

[bookmark: _Toc132990868]4. Update the database with new collections
Put the new collections in the database. The new collections are available in the “MasterTables” directory of the release repository. The list of collections to be imported into the database for the new features are:
1. PostParsingTemplate
2. PostParsingProcessingLogic
3. PythonTemplate
4. PostPredictionProcessTemplate
5. 3GPP5GConfigProperties
6. DataCollectionConfigurationTemplate
7. CauseStandardization
8. RegexCauseStandardization
9. AnsibleWorkFlowConfig
10. AnsibleRuleConfiguration
11. AnsibleWorkflowConfigurationTemplate
12. TopologyStitchingConfiguration
13. TopologyStitchingConfigurationTemplate
14. TSDisplayElements
15. ClusterConfigurationEntity
16. ClusterConfiguration
17. VBIAnnotations

Run the import script (shown below) to load the new collections:

mongoimport --host <Internal_IP> --port 30001 -u <DB_Username> -p <DB_Password> --legacy --file <File_Name> --db <DB_Name>--ssl --sslCAFile <Path_To_Mongo_crt_File> --sslPEMKeyFile <Path_To_Mongo_Pem_File>--tlsInsecure

Example:

mongoimport --host 172.31.16.66 --port 30001 -u testusername -p 'testpassword' --legacy --file PostParsingTemplate.json --db testdb --ssl --sslCAFile /etc/ssl/mongodb-cert.crt --sslPEMKeyFile /etc/ssl/mongodb.pem --tlsInsecure

[bookmark: _Toc132990869]5. Addition of new entries to the config.properties
In CAN 6.0, we can have a secure connection between the CAN and LDAP with the use of SSL/TLS certificates. Using this we can encrypt all the data that is transferred between client applications and MongoDB server.

Please add the below properties to the existing config.properties file and remove the older enties of LDAP:

	avanseus.ldap.baseDN=o=employee,dc=avanseus,dc=com
avanseus.ldap.bindDN=cn=Directory Manager
avanseus.ldap.bindPassword=<ldap_password>
avanseus.ldap.authFilter=uid=%u
avanseus.ldap.url1=ldaps://opendjldap:1636
avanseus.ldap.url2=ldaps://opendjldap:1636
avanseus.ldap.ssl.enabled=true
avanseus.ldap.keystore.path=/data/workspace/pemfile/ldap.jks
avanseus.ldap.keystore.password=EXltILuSiFxiJaGIRuEGUyHEKr3EYKFQ
avanseus.ldap.validHostName=false
avanseus.ldap.readyOnly=false

#Python processor node configuration
avanseus.pythonprocessor.host=pythonprocessornode
avanseus.pythonprocessor.port=7001

#Ansible processor node configuration
avanseus.ansibleprocessor.host=ansibleprocessornode
avanseus.ansibleprocessor.port=3000

#Batch handler configuration
avanseus.app.batchHandler.host=batchhandlernode
avanseus.app.batchHandler.port=6000

#CX prediction module
avanseus.can.customerExperienceRequired=true

[bookmark: _Toc132990870]6. Porting from LDAP to OpenDJ
[bookmark: _Toc132990871]6.1. Restoring the old users from the existing LDAP
Run the below commands.
	kubectl get pods –n avanseus-workspace
kubectl exec -it <ldap_pod_name> -n avanseus-workspace -- /bin/bash
su -l appuser
cd /home/appuser/
cd OpenDS-2.2.1/
bin/export-ldif -h localhost -p 4444 -D "cn=Directory Manager" -w password -X --includeBranch "dc=avanseus,dc=com" --backendID userRoot --ldifFile export_new.ldif
exit

Now the users are restored into into the file export_new.ldif. Next step is to take out the file export_new.ldif from pod to the local server. Run the below command.

	kubectl cp avanseus-workspace/<ldap_pod_name>:/home/appuser/OpenDS-2.2.1 <path_where_you_want_to_copy_the_file>

In the restored file (export_new.ldif) remove the lines containing “entryUUID”,” pwdChangedTime”,” createTimestamp”, “modifyTimestamp”,” creatorsName” and ”modifiersName”.

[bookmark: _Toc132990872]6.2 Installing OpenDJ
For Opendj installation, please follow the MOP for AWS or on-premise installation with NFS storage.
Use the above restored export_new.ldif file while restoring the users so that all the old users are restored in the new Opendj.

[bookmark: _Toc132990873]7. Update new CAN and CAS images in the Helm charts
1. Uninstall CAN helm chart.
2. Take a new build of CAN and CAS and push it to respective docker image repository.
3. Reinstall the CAN module.

Page | 3
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.
image2.png

image1.png

image3.png
A
BVSHSQU&

