

CAN INSTALLATION AND
CONFIGURATION

Cognitive Assistant for Networks (CAN) Release 6.0

NOVEMBER 30, 2022
AVANSEUS TECHNOLOGIES PVT. LTD.

Page | 1 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Table of Contents

1. Initial Configuration Steps ... 2

2. Manual Verification Steps (Using Utilities) ... 7

3. Notes on CAN Entity Hierarchy and Their Usage 12

4. Note on Reinstallation of CAN .. 13

Page | 2 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

1. Initial Configuration Steps

1. Setup the OpenDJ LDAP, MongoDB, VBI, PredictionController, PredictionWorker,

BatchHandler & RecordProcessor modules using the Helm charts mentioned in the MOP

documents(There may be other modules which are optional for CAN to run).

2. Setup the CAN pod by configuring the “config.properties” ConfigMap correctly. i.e., IP’s,

Ports, service names and encrypted passwords. See the sample content below:

#Domain details
avanseus.app.cas.domain=avanseuscanintegration.com
avanseus.app.can.domain=avanseuscanintegration.com

#VBI configuration
avanseus.vbi.ip=vbicontainer
avanseus.vbi.port=12001

#Domain protocol
avanseus.protocol=https

#Host details
avanseus.app.cas.host=canapp:2003
avanseus.app.can.host=canapp:2000

#Memcached configuration
avanseus.memcached.url=memcached:11211

#MongoDb configuration
avanseus.mongodb.ssl.enabled=true
avanseus.mongodb.validHostName=false
avanseus.mongodb.keystore.path=/data/workspace/pemfile/mongo.pkcs12
avanseus.mongodb.keystore.password=r7qs0Kobh5s+q0Wtlj1JZbtkdqGxBdx/

avanseus.mongodb.ip=database
avanseus.mongodb.port=30001
avanseus.mongodb.username=canupgradedb
avanseus.mongodb.password=qsoAXxeOGkmqvmFXbKvKd8u14350Trdi

avanseus.mongodb.dbName=canupgradedb

avanseus.mongodb.admin.username=admin
avanseus.mongodb.admin.password=qsoAXxeOGkmqvmFXbKvKd8u14350Trdi
avanseus.mongodb.admin.dbName=admin

avanseus.app.googleKey=AIzaSyBIvCdlZrceLDdNMzLPOVPzS2ZisLfne4k

#log configuration
avanseus.log.path=/data/workspace/logs/
avanseus.log.thread.poolsize=20

#LDAP server configuration
avanseus.ldap.baseDN=o=employee,dc=avanseus,dc=com
avanseus.ldap.bindDN=cn=Directory Manager
avanseus.ldap.bindPassword=D+nmhhDVgn9B+l0lnv4sig==
avanseus.ldap.authFilter=uid=%u
avanseus.ldap.url1=ldaps://opendjldap:1636
avanseus.ldap.url2=ldaps://opendjldap:1636
avanseus.ldap.ssl.enabled=true
avanseus.ldap.keystore.path=/data/workspace/pemfile/ldap.jks
avanseus.ldap.keystore.password=7T76ayOUOK6piG86h/pea6L/+RE3Kw4M
avanseus.ldap.validHostName=false
avanseus.ldap.readyOnly=false

Page | 3 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

#NAS path
avanseus.app.nas.path=/data/workspace/nasmount/

#Email Config
avanseus.email.fromId=can.admin@avanseus.com
avanseus.email.pwd=Candev@53us
avanseus.email.host=smtp.office365.com
avanseus.email.fromName=CAN Test server
avanseus.email.port=587
avanseus.email.startTlsEnabled=true

#Cluster node configuration
avanseus.predictionNode.name=nodeA

#Python processor node configuration
avanseus.pythonprocessor.host=pythonprocessornode
avanseus.pythonprocessor.port=7001

#Ansible processor node configuration
avanseus.ansibleprocessor.host=ansibleprocessornode
avanseus.ansibleprocessor.port=3000

#Customer Experience (boolean)

avanseus.can.customerExperienceRequired=false

3. Setup setenv.sh properties with relevant Java heap space for CAN application in the

ConfigMap. Mentioned below is a default sample with Email SSL protocol version, Xms &

Xmx configuration in setenv.sh

JAVA_OPTS="$JAVA_OPTS -Dmail.smtp.ssl.protocols=TLSv1.2 -
Dcom.sun.jndi.ldap.object.disableEndpointIdentification=true -Xms1024m -Xmx2048m"

4. Create a user in MongoDB and import the collections that are available in “MasterTables”

directory of release repository. The collections and their purposes are as follows:

Entity name Purpose

3GPP5GConfigProperties This contains 3GPP configuration properties

5bed7c01fd9b9d519fedd798,
5bed7c22fd9b9d519fedd79b,
5d0ce5a1cbaaab22bc8aa286,
5bed7f6afd9b9d519ffb5776, Resource &
ResourceEntity

Contains default data for resource file load screen

Cause Default alarm causes

AnsibleWorkflowConfigurationTemplate
Has master code template used for processing the
task output

AnsibleWorkFlowConfig Contains ansible workflow schema configurations

AnsibleRuleConfiguration
Consists of equipment component, cause & workflow
schema mappings

AnsibleJob Contains ansible job execution details

AnsibleTask Contains ansible task execution details

AnnouncementRuleConfiguration
Contains sample data for Announcement rule
configuration screen

Page | 4 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Entity name Purpose

3GPP5GConfigProperties This contains 3GPP configuration properties

AlertEmailConfiguration Contains initial data for Notification handler screen

DataCollectionConfigurationTemplate
Has master code template used for Data Collection &
Configuration

DefaultComplexCodeROE Contains default configuration for ROE screen

DefaultPolicyConfiguration
Contains default policy configuration which will be
used to retrieve the original state of a default policy

in the policy configuration screen

DomainIcon Contains default icon paths for default domains

Config Generic configuration table

CauseStandardization
Consists of rawCause(raw data), typifiedCause and its
associated standardCause as fields.

RegexCauseStandardization
Consists of regex for pattern matching for rawCause
and its associated standardCause as fields.

EmployeeAccess Has the initial user id as 'canadmin'.

EntityFilterMaster,
EntityFilterMasterQuery &
EquipmentIcon

Contains default values for Cross domain correlation
screen

EquipmentComponent Default equipment components

EventFileFormat Contains default data for Parser screen

EventFileFormatTemplate Has master code template used for parser

ExcelPageConfiguration
Contains default data for Excel page configuration
screen

ExcelPageConfigurationTemplate
Has master code template used for excel report
generation

ExcelReportConfiguration
Contains default data for Excel report configuration
screen

FieldLearntCauses Contains default data of Root cause learnt from the

 field

FileCollectionConfiguration Contains default data for file collection screen

KafkaConfigProperties Contains default configurations for Kafka

PerformanceCounterCause
Contains distinct KPI names for which we will run the
prediction.

PostParsingProcessingLogic
Contains a sample for record splitting logic which was
used in 1 of the samples added in record parser.

PostPredictionProcess
Contains default data for Post prediction process
screen

PostPredictionProcessTemplate
Has master code template for Post Prediction. It
consists of templateName and templateCodeSnippet as
its fields.

PostProcessorTemplate
Has master code template used for parser’s post-
processor

Page | 5 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Entity name Purpose

3GPP5GConfigProperties This contains 3GPP configuration properties

Postprocessor Contains default data for post processor screen

PostParsingTemplate
This contains templates for Spitting and grouping
screens of file-postprocessor

PreProcessorTemplate
Has master code template used for parser’s pre-
processor

PredictionFilter Has master code logic for prediction filtration

PredictionFilterTemplate Has master code template for prediction filtration

PredictionKeyFilter Contains default data for prediction filter screen

PredictionFilterRule Contains filter rules

PredictionNode
Contains default data for Prediction nodes. Default is
3 nodes as of now.

PredictedFaultToTicketMappingTemplate
Contains template needed to compile
PredictionToTicketMapping code

Preprocessor Contains default data for pre-processor screen

PythonTemplate Has python code template used for python execution

RemedyConfig
Contains remedy config values such as cron , mean
threshold closed days

RemedyFieldValue
Contains fieldId and field names of remedy internal
fields

RoeConfig Stores default RoE configuration

RoeConfigTemplate Has master code template for RoE configuration

RoePolicyConfiguration
Stores default policy configuration for Policy
configuration screen

RoeSheetConfiguration
Stores default sheet configuration for roe sheet
configuration screen

Role
Has initial role for “canadmin”. Only Super Admin
role would be present in Role table by default.

RootCauseAnalysis &
RootCauseAnalysisEntity

Contains default data for Root cause analysis
configuration screen

SplunkFields
Has splunk search job related fields and their default
values

TechnicalAnalysedCauses
Contains default data of Root cause learnt from
technical analysis

TopologyStitchingConfiguration
Contains default code for Topology Stitching
Configuration screen

TopologyStitchingConfigurationTemplate
Contains master code template used for Topology
Stitching Configuration screen

TSDisplayElements
Contains link & network element type default mapping
for Topology Stitching

Page | 6 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Entity name Purpose

3GPP5GConfigProperties This contains 3GPP configuration properties

ThresholdConfiguration
Contains threshold type (min/max) and the threshold
value for each of the KPI

VBIAnnotations
Contains necessary information for VBI module
related to possible questions voice based module
accepts

WeatherStatusResponseCode
Contains weather codes, weather description, color
code and image icon path

WebServiceConfig

Contains an entry with a threshold limit used for the
maximum number of Prediction delivery API requests
being served from the CAN application to the client in
a day

5. Run the file with Index scripts on MongoDB available in “CAN_Indices.txt” file located in

“MasterTables” directory of GIT. These will create initial set of indices required for CAN

application.

6. Also update the nasmount path in few DB collections by executing the below

script.

In the above script, replace the nasmount path value with respective nasmount directory of

deployment environment.

7. Deploy CAN master helm chart

8. Configure the file collection & parser.

var nasPath = "/data/workspace/nasmount/"

db.getCollection('5d23282ebb19a8c46c88c105').update({},{$set:{"filePath":nasPath+"/CAN/Resources/
RANSharedSites/Report_SSI_H3G.XLS"}}, {multi:true})
db.getCollection('5d23285dbb19a8c46c88c128').update({},{$set:{"filePath":nasPath+"/CAN/Resources/
PlannedWorks/Planned 01.05-05.11.2018.xlsx"}}, {multi:true})
db.getCollection('5d232805bb19a8c46c88c0f1').update({},{$set:{"filePath":nasPath+"/CAN/Resources/L
ongPendingTickets/Sol.xlsx"}}, {multi:true})
db.getCollection('5d232845bb19a8c46c88c117').update({},{$set:{"filePath":nasPath+"/CAN/Resources/S
itePriority/Localization_sites.xls"}}, {multi:true})
db.getCollection('FieldLearntCauses').find({}).forEach(function(e){db.getCollection('FieldLearntCauses').
update({filePath:e.filePath},{$set:{filePath:nasPath+e.filePath}})})
db.getCollection('PostPredictionProcess').update({"classFilePath":"/CAN/Generated_Dir"},{$set:{"class
FilePath":nasPath+"/CAN/Generated_Dir"}},{})
db.getCollection('PostPredictionProcess').update({"javaFilePath":"/CAN/Generated_Dir/postPrediction
ProcessUploadedFile"},{$set:{"javaFilePath":nasPath+"/CAN/Generated_Dir/postPredictionProcessU
ploadedFile"}},{})
db.getCollection('ResourceEntity').find({}).forEach(function(e){db.getCollection('ResourceEntity').update(
{filePath:e.filePath},{$set:{filePath:nasPath+e.filePath}})})
db.getCollection('RootCauseAnalysisEntity').find({}).forEach(function(e){db.getCollection('RootCauseAn
alysisEntity').update({filePath:e.filePath},{$set:{filePath:nasPath+e.filePath}})})
db.getCollection('TechnicalAnalysedCauses').update({"filePath":"/CAN/RootCauseAnalysis/technicalA
nalysis/SampleFileForTechnicalAnalysis.xlsx"},{$set:{"filePath":nasPath+"/CAN/RootCauseAnalysis/
technicalAnalysis/SampleFileForTechnicalAnalysis.xlsx"}},{multi:true})

Page | 7 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

2. Manual Verification Steps (Using Utilities)

NOTE: URL Utilities mentioned below are run using the Javascript developer console in the browser

after CAN login is successful. Due to security reason, we do not allow direct URL access via GET

method and hence “window.redirect()” JS utility is provided in invoke POST requests to mentioned

below URL utilities.

1. Run the file collection & parsing:

URL: http://<domain>/CAN/pickupData

In developer console, use the following after login:

Eg: window.redirect("pickupData", {}, "_blank");

This step is to load the data.

2. Create the "PredictionKeyFilter" table entries for all causes having default rule (0, 0):

URL: http://<domain>/CAN/functionalConfigurations/generateFilterKeys

In developer console, use the following after login:

Eg: window.redirect("functionalConfigurations/generateFilterKeys", {filterId:

"5746ab0a66bba21bf99dc004"}, "_blank");

3. Running clustering:

URL: http://<domain>/CAN/functionalConfigurations/performCluster

In developer console, use the following after login:

Eg: window.redirect("functionalConfigurations/performCluster", {}, "_blank");

4. Running prediction:

URL: http://<domain>/CAN/predictionService/predict

In developer console, use the following after login:

window.redirect("functionalConfigurations/performCluster", {}, "_blank");

window.redirect("pickupData", {}, "_blank");

window.redirect("functionalConfigurations/generateFilterKeys", {filterId: "<filter_id>"},

"_blank");

Page | 8 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Alarm - window.redirect("predictionService/predict", {"time": "dd-MM-yyyy HH:mm, dd-MM-
yyyy HH:mm, ……","predictionType":"ALARM"},"_blank");

KPI - window.redirect("predictionService/predictKPI", {"time": " dd-MM-yyyy HH:mm, dd-MM-
yyyy HH:mm, ……","predictionType":"KPI"},"_blank");

Health Index - window.redirect("predictionService/predictHealthIndex", {"time": " dd-MM-yyyy
HH:mm, dd-MM-yyyy HH:mm, ……","predictionType":"SUPERPOSED"},"_blank");

Multiple Type of Prediction - window.redirect("predictionService/predictAll", {"time": " dd-MM-
yyyy HH:mm, dd-MM-yyyy HH:mm, ……"},"_blank");
(In this scenario he predictionType key in config table has to be changed)

Eg:

Alarm - window.redirect("predictionService/predict", {"time": "07-01-2020 00:00,08-01-2020
00:00","predictionType":"ALARM"},"_blank");

KPI - window.redirect("predictionService/predictKPI", {"time": "07-01-2020 00:00,08-01-2020
00:00","predictionType":"KPI"},"_blank");

Health Index - window.redirect("predictionService/predictHealthIndex", {"time": "07-01-2020
00:00,08-01-2020 00:00","predictionType":"SUPERPOSED"},"_blank");

Multiple Type of Prediction - window.redirect("predictionService/predictAll", {"time": "07-01-2020
00:00,08-01-2020 00:00"},"_blank");

(In this scenario he predictionType key in config table has to be changed)

5. Generate the fault trace:

URL: http://<domain>/CAN/functionalConfigurations/generateAndUpdateFaultTrace

In developer console, use the following after login:

Eg: window.redirect("functionalConfigurations/generateAndUpdateFaultTrace", {"historyDays":

30","startDate": "11-01-2018", "endDate": "15-01-2018" }, "_blank");

NOTE: The “endDate” parameter is optional. It may not be given, if only one day fault trace

has to be updated.

6. Generate the fault history:

URL: http://<domain>/CAN/functionalConfigurations/updateFaultHistory

In developer console, use the following after login:

window.redirect("functionalConfigurations/generateAndUpdateFaultTrace", {"historyDays":

"<days>","startDate": "<dd-mm-yyyy>", "endDate": "<dd-mm-yyyy>" }, "_blank");

Page | 9 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Eg: window.redirect("functionalConfigurations/updateFaultHistory", {"startDate": "11-01-2018",

"endDate": "15-01-2018" }, "_blank");

NOTE: The “endDate” parameter is optional. It may not be given, if only one day fault history

has to be updated.

7. Configure the Excel report format & mailing list.

8. Generate the particular day’s report:

URL: http://<domain>/CAN/excelReport/downloadReport

In developer console, use the following after login:

Eg-1: window.redirect("excelReport/downloadReport", {"time": "10-04-2019",
"predictionType":"ALARM" },"_blank");
Eg-2: window.redirect("excelReport/downloadReport", {"time": "01-10-2019 00:00:05",
"predictionType":"KPI" }, "_blank");
Eg-3: window.redirect("excelReport/downloadReport", {"time": "18-10-2019 05:30:00",
"predictionType":"Health Index" }, "_blank");

9. Generate RoE for an interval of dates:

URL: http://<domain>/CAN/functionalConfigurations/updateRoePredictions

In developer console, use the following after login:

Eg: window.redirect("functionalConfigurations/updateRoePredictions", {"startDate": "11-01-

2018", "endDate": "15-01-2018" }, "_blank");

10. Generate the particular prediction window’s matching report:

URL:

http://<domain>/CAN/predictiveFaultAnalytics/downloadConsolidatedAlarmMatchingReport

In developer console, use the following after login:

Eg: window.redirect("predictiveFaultAnalytics/downloadConsolidatedAlarmMatchingReport", {

window.redirect("functionalConfigurations/updateFaultHistory", {"startDate": "<dd-mm-yyyy>",

"endDate": "<dd-mm-yyyy>" }, "_blank");

window.redirect("excelReport/downloadReport", {"time": "<dd-mm-yyyy>", "predictionType":
"<prediction_data>" }, "_blank");

window.redirect("functionalConfigurations/updateRoePredictions", {"startDate": "<dd-mm-

yyyy>", "endDate": "<dd-mm-yyyy>" }, "_blank");

window.redirect("predictiveFaultAnalytics/downloadConsolidatedAlarmMatchingReport", {

windowIdentifier: "<time_in_milliseconds_of_the_first_day_of_prediction_window>" },

"_blank");

Page | 10 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

windowIdentifier: "1556060000000"}, "_blank");

11. Formatted Predicted Fault table will be generated automatically after Prediction. If the table

is not present in the database, then create that table manually by running:

URL: http://<domain>/CAN/ predictiveFaultAnalytics/generateFormattedPredictedFault

In developer console, use the following after login:

Eg: window.redirect("predictiveFaultAnalytics/generateFormattedPredictedFault", { startDate:

"29-04-2019", endDate: "30-04-2019"}, "_blank");

NOTE: To run the above URL, please make sure that all the code snippets written in the Page

Configuration screen have been compiled and saved.

12. Rest API to run alarm post prediction activities

URL: http://<domain>/CAN/predictionService/runPostPredictionActivity

Request parameters:

a. time – Prediction dates separated by “,” (Date format should be dd-MM-yyyy).

b. initialExecutionStatus – Initial execution status of all post-prediction executors. The

value should be either true or false. (True indicates all post-prediction executors will get

enabled, False indicates all post-prediction executors will get disabled.)

c. enableOrDisablePostPredictionExecutorsList – Mapped index of post-prediction

executors separated by “,”. (The given post-prediction executors will get

enabled/disabled based on the value of ‘InitialExecutionStatus’)

Relation between InitialExecutionStatus and enableOrDisablePostPredictionExecutorsList

parameters:

a. Use case 1:

initialExecutionStatus:true , enableOrDisablePostPredictionExecutorsList:”1,2,4”

This will enable all post-prediction executors except the executors which are mapped to

indexes 1,2 and 4.

b. Use case 2:

initialExecutionStatus:false , enableOrDisablePostPredictionExecutorsList:”2,3,4”

This will enable only the executors which are mapped to indexes 2,3 and 4. Others will

get disabled.

window.redirect("predictionService/runPostPredictionActivity", {"time": "<dd-MM-yyyy, dd-MM-

yyyy, …..>", "initialExecutionStatus" : <true/false>,

enableOrDisablePostPredictionExecutorsList:"<comma_separated_executor_index_list> "},

"_blank");

Eg: window.redirect("predictionService/runPostPredictionActivity", {"time": "20-04-2022, 21-04-

2022, 22-04-2022, 23-04-2022, 24-04-2022, 25-04-2022, 26-04-2022, 27-04-2022, 28-04-2022, 29-

04-2022, 30-04-2022, 01-05-2022, 02-05-2022, 03-05-2022, 04-05-2022, 05-05-2022, 06-05-2022,

window.redirect("predictiveFaultAnalytics/generateFormattedPredictedFault", { startDate: "dd-

MM-yyyy", endDate: "dd-MM-yyyy" }, "_blank");

Page | 11 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

07-05-2022, 08-05-2022, 09-05-2022, 10-05-2022", "initialExecutionStatus" : true,

enableOrDisablePostPredictionExecutorsList:"1,2"}, "_blank");

Available post-prediction executor and it’s mapping index:

Post-Prediction Executor Mapped index

APPLY_FILTER 1

DUMP_OUTPUT_FILE 2

APPEND_CLUSTER_ID 3

CUSTOMIZED_POST_PREDICTION 4

TICKET_CORRELATION 5

UPDATE_REPETITIVE_ALARM 6

UPDATE_FAULT_HISTORY 7

UPDATE_SOLUTION_REPORT 8

UPDATE_FAULT_TRACE 9

UPDATE_EFFECTIVE_FAULT_HISTORY 10

RCA_ANALYSIS 11

UPDATE_TOPOLOGY_PATH_SEQUENCE 12

PC_CORRELATION_ANALYSIS 13

ALARM_DURATION_PREDICTION 14

ENABLE_ROE 15

SEND_EMAIL 16

FORMATTED_PREDICTED_FAULT_CREATION 17

ANSIBLE_JOB 18

ALARM_MATCHING 19

PC_MATCHING 20

13. Initiate the call and repair probability calculation

URL: http://<domain>/CAN/bcxp/predictCallRepairLikelihood

In developer console, use the following after login:

Eg: window.redirect(("bcxp/predictCallRepairLikelihood", { time:”29-04-2019,30-04-2019” },

"_blank");

14. Run Weather predictions for a particular interval

 URL:

http://<domain>/CAN/integrationConfiguration/weatherConfiguration/generateWeatherDataFo

rGivenDate

In developer console, use the following after login:

window.redirect("bcxp/predictCallRepairLikelihood", { time: “<dd- MM-yyyy>, <dd- MM-yyyy>…”

}, "_blank");

Page | 12 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

Eg: window.redirect("integrationConfiguration/weatherConfiguration
/generateWeatherDataForGivenDate", {"startTime":"14-01-2023 00:00:00","endTime":"15-01-
2023 23:59:00"},"_blank")

15. Run Ansible jobs for a prediction day

URL: http://<domain>/CAN/ansibleExecution/runAnsibleJobs

window.redirect("ansibleExecution/runAnsibleJobs", {"time": "dd-mm-yyyy"}, "_blank");

Eg: window.redirect("ansibleExecution/runAnsibleJobs", {"time": "07-01-2023"}, "_blank");

3. Notes on CAN Entity Hierarchy and Their Usage

A pictorial representation of Office code and internal components is shown below.

From the above picture, it is clear that a Site/Office code will have multiple equipment installed

in it and each equipment will have multiple components. These components can be equipment’s

port, slot, rack etc.

In CAN application, we will have multiple entities that defines these Site components. The

multiple entities are:

a. Office Code - DB collection would be Office Code

b. Equipment - DB collection would be Equipment

c. Equipment Component - DB collection would be Equipment Component

Above entities are made mandatory in the Parser screen for the Alarm configuration.

window.redirect("integrationConfiguration/weatherConfiguration/generateWeatherDa

taForGivenDate", {"startTime":"dd-mm-yyyy hh:mm:ss","endTime":"dd-mm-yyyy

hh:mm:ss"},"_blank")

Page | 13 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

The table shown below contains different operations along with the Entity level.

Operation Entity level

Prediction Equipment component

Fault history Equipment

Fault trace Equipment

Clustering/Cross domain correlation Office code

RC analysis Equipment

ROE (Return on effort) Equipment

Topology Stitching (Cross Domain Topology
Discovery)

Equipment

Ticket history Equipment

4. Note on Reinstallation of CAN

a. CAN application now runs in multiple instances in a cluster mode for high availability

when accessing UI. Due to this reason, even the Cron triggers used in our application

across many use cases have been made cluster aware. Quartz scheduler is now cluster

aware and stores the state of each Quartz trigger in MongoDB. Whenever CAN

application is completely reinstalled or installed back after a long period, there are

some stale triggers in the database which may trigger the moment the application

comes up. This is good since the application needs to be updated with the latest data.

However there may be cases where the trigger is very old and you may not require that

to run. For this, please drop the below mentioned collections from the database and

then start the application.

• quartz_calenders

• quartz_jobs

• quartz_locks

• quartz_triggers

b. Batch Handler & Record processor caches

• Batch handler cache: It contains file preprocessor cache that is refreshed in every
5 minutes

• Record processor cache:

o Record postProcessor cache that is refreshed in every 5 minutes.

o Alarm Filter cache that is refreshed in every 5 minutes.

o Event file format cache that is refresh every 5 minutes and contains
maximum 20 entries.

o Respective master tables are also stored as cache that is not refreshed so
clearing collections of any master tables requires restart of Record
processor. By default this cache contains 500000 entries and stores ids.

o Any other configurations to this cache can be done
in recordProcessorCache field of Config table currently this is not visible in
UI. Here size denotes size of cache and fields to be stored in cache are

Page | 14 Copyright © 2022 Avanseus Holdings Pte. Ltd. All rights reserved.

inside fields.
{
"_id":ObjectId("63861da42510e142e21b4ca5"),
"key":"recordProcessorCache",
"value":{

"default":{
"size":NumberInt(100000),
},
"Cause":{
"size":NumberInt(50000),
"fields":[
"serviceAffecting",
"domain",
"priority"
]
},
"OfficeCode":{
"size":NumberInt(50000),
"fields":[
"officeCodePriority"
]
},
"Equipment":{
"size":NumberInt(50000),
}
}
}

	1. Initial Configuration Steps
	2. Manual Verification Steps (Using Utilities)
	3. Notes on CAN Entity Hierarchy and Their Usage
	4. Note on Reinstallation of CAN

