i

DATA LOAD ARCHITECTURE

DEVELOPER GUIDE CAN 6.0

-«

FEBRUARY 25, 2023
AVANSEUS TECHNOLOGY PVT. LTD.

BVSHSEU&

REVISION HISTORY

Version Date Change de- Created By Updated by Reviewed by
scription
V6.0 February 2023 | Initial Release | Shlaghana Raksha Chiranjib
Page |1

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

—
avanseus N

Table of Contents

LIz L1 F X o 0] 1 1= 1 £ SRS 2
N | 0 4 oo 18 o5 A o o RO PO PUTPRUPUPPPRTT 3
A ¥ 1o 1Ll B LT of o] o1 4o] o TP PPPPU R TUPPPPPRRTT 3
REFEIENCE TADIE....c. ettt e s hb e e e bt e e e nbe e e e enbbe e e enbeeeeennee 3
L= 1ST= o3 €0 T T = o [P ES 3
I T I 1] Ao] 1 o L o3 = ST PURPURRUPUPPRRR 3
Configuration for Data Load from Ul ... e e e e e e e e e e e e e e e e e 4
TaT o 10 Y F=T o] o1 g @] 1T U1 =\ 4] o I SRR PPRR 4
Data Collection CONFIQUIALIONoiuuiiiiiiie ettt ettt e e s nbee e e eneee 6
I B = 2= W o = Lo [o oo = RS USUPPSRR 7
(D= 1= W]| [Tox 1Te] o HO PP URPPPUTPPPRRT 7
(D= 1= = (=T 1o o PRSPPI 7
Data Transformation and LOAINGueeiieiiiiiiiiiiee e sr e s e e e e s s s e e e e e e e snnreeeeeeeean 7
Block Representation Of DAt LOA.uueiiiiiiiiiiiie ittt et e e 7
6 Data ColleCtion iN CANttt et ettt e e e s e ab b bt e e e e e s e sanbbeeeaaeeesannbeeeeaaeeaans 8
Data ColleCtion @S BAICKuiiiiiiiiiiiiice et e et e s n e e et e e e 8
Data CollECHON 8S SrEAIMuuiiiiiiiii ettt s tb e e s e bt e e s bbe e e s anbeeesanbeeeeeneee 8
7 BatCh HandIer GRPCottt e e e s st e e e e s e snn b e eeeaeeesnnsneeeeaeeeanns 9
[1L D L= W o= =T = oo PP UPPP T SOTUPPRR 9
PrE-PrOCESSOr PIPEIINE: ...t e e e e s e e e e e e e sanbereeeaeeaan 9
LT (00T o 1T N =T =1 1 T SRR 9
SPHIING PIPEINE. ..ttt e et bt e e e e bt e e sabb e e e e bt e e e e snbeeeeanees 9
File Configuration Validator:ooo it bre e e 10
Caches iN BatCh HaNAIEN ...t a e 10
[RY=Tol oY ol =l ¥o 1ot =3 o] LTSRS 10
= V) o T =1 o g1 USRS 10
LT oTo] (o I oo 1y A o (0Tt 11 PSR 11
1 RSP PS 11
10 Record ProCessor CaCh@: e 11
LCT=] =T ¢ ol @ Tod 2 11 o R0 ST 11
CoNtrolled CaChING:coiiiiie ettt e bt e e s bt e e et e e e e b e e e e abree e 11
11 AUdit Of PArs@d FIlES ...ttt e e e s st e e e e e e s ennbeeeaaeeeanns 12
Page |2

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

BVSHSQU&

Introduction

This document describes the sequence of steps to be followed for data load and architecture of data

load process.

Table Description

This section includes reference table and transaction table with description.

Reference Table

Table Name
FileCollectionConfiguration
EventFileFormat

Preprocessor

PostParsingProcessingLogic

Postprocessor

DataCollectionConfigurationTemplate

3GPP5GConfigProperties

KafkaConfigProperties

EventFileFormatTemplate

PostParsingTemplate

PreProcessorTemplate

PostProcessorTemplate

Transaction Table

Description
Contains configured file Collection configuration
Contains configured record parser details
Contains configured pre-processor

Contains splitting and grouping screen
configuration

Contains configured postprocessor

Has master code template used for Data
Collection & Configuration

This contains 3GPP configuration properties
Contains default configurations for Kafka

This contains template for record parser
mapping code and template code for custom file

type

This contains templates for Spitting and
grouping screens of file-postprocessor

Has master code template used for parser’s pre-
processor

Has master code template used for parser’s
post- processor

Data load takes place to the Datasource tables such as performance counter, Alarms, Tickets etc.

If resource is uploaded from Resource configuration screen, Resource Id is used as table for data

load.

List of Indices

Master table indices: Master table refers to ids that are stored in DataSource table. Unique index for

name field must be added to all master tables.

Example: db.EquipmentComponent.createindex({name : 1}, {unique: true});

Page |3

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

avanseu&

Data source table indices: For DataSource tables such as Alarms, Performance counter, tickets etc.
unique field/set of fields is selected and index is added on those fields. This maintains uniqueness of
data and avoid duplicate entries.

Configuration for Data Load from Ul
Input Mapper Configuration
File Pre - Processor

File Pre-Processor screen is used to process the data before mapping it to CAN field. This is helpful
when some data needs to be excluded from data load or some input data value needs to be modified.

User Administrator Developer
2 L e gt . 3
B =2 @ R ¥ & B B|l& & © @

Predictive CX Performance Root Cause Cross Domain Integration Inventory Technician User Meonitoring Seftings Adaptahon
Fault Analysis Prediction Predicfion Prediction Correlation Gateway Planning ‘Work Plan Management
File Post-processor Record Parser Record Post-processor
Code Language: Code Snippet Identifier Descripfion® Pre-processor Name*
» — SamplePreprocessor m
‘ Java v ‘ |th ‘ |hllk ‘ |JhJJ
c lear
= = Error- 3
117 import com.avanseus eventFileFormat.IPreprocessor; Waring: 0 0 Testname m]
import com.avanseus helper.Record; Info: 0
import java.util HashMa
. po] . 5 & Testpppp m
import java.util Map;
import com.mongodb.BasicDBObject;
import com.mengodb.DBCursor, hhihkjkk m
import com.mongodb DBObject;
import com mongodb WriteResult, hh i}
testigigf m
public class Ghh implements IPreprocessor {
A g]
& {[» Versions Commit Update
aaadesciest m

Figure 4-1 - File Pre-Processor Screen
File Post-processor
Splitting: It is defined as converting single record into multiple records.
e Direct Mapping

Mapped attribute header requires list of columns to be split. The splitting takes place in such a
way that number of newly added records is equal to size of mapped attribute. Two columns
are newly added in the parsed record after split.

e Custom Mapping

The custom mapping can be used if single column cannot be used as split logic. Criteria that
are more complex can be configured by writing code in IDE.

Grouping: Itis defined as grouping multiple records into single record.

Page |4
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

-\
GVBHSEU&

User Administrator Developer
o
& B = e @ = IR
W B ¢ R # € B B | e G Y
Predictive CX Performance RootCause Cross Domain Integration Inventory Technician User Menitoring Settings Adaptation
Fault Analysis Prediction Prediction Prediction Correlafion Gateway Planning Work Plan IManagement

Record Parser

File Pre-processor Record Post-processor

Grouping

Split Configuration
Direct Mapping Custom Mapping Sample]

Mame* | Sample 2 ‘ jihhh m]

Mew attribute name Attribute value Mapped attribute

| Data | | Value | | AddDelete columns W | v |] Samplel il

| New attribute Name | | Affribute value | | Add/Delete columns Y | O | @

Add New

Save

Figure 4-2 - File Post-Processor Screen

Record Parser

This configuration involves mapping of fields in file to CAN fields. Here mapping is done either directly
or by using IDE code. Record processor uses this configuration to transform data and make it
compactable with CAN module.

User Administrator Developer
0
& B & B3 @ S e N I
[@ @ “ﬁ" %If: = =j i@,& = Cy ~
Predictive (4 Performance Root Cause Cross Domain Integration Inventory Technician User Monitoring Settings Adaptation
Fault Analysis Prediction Prediction Prediction Correlafion Gateway Planning Work Plan Management

File: Pre-processor File Post-processor Record Post-processor

Data Source: Tickets Work order Performance counter | Cuslomer experience Network inventory Logs | Others I
. =
Saved Mappings: OlAlarm tesing Add New Mapping
File Level Info Mapped Fields ‘ V4 ‘ o
Mapping Name CAN Field
Name : OlAlam Descripfion: Alarm data mapping based on Ol data ‘ priority ‘ Priry
Pre-processor. - Post-processor. - ‘ ofiiceCodz ‘(f) ‘ Ofice Code
Grouping Name: - Spliting Name: - | G | EmE
HetworkElement ‘ & ‘ ipmient Cor t
Page Size: 6000 Header : ‘ T
‘ nafion ‘(f) ‘ Nation
File Type: JSON
‘ zone ‘(f) ‘ Zane
| Cause | Causz

Figure 4-3 - Record Parser Screen

Page |5
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

SVBHSEU&

Record Post - Processor

Post-processor is used to modify or discard the data after parsing and just before loading of data.
Data that comes as input here is transformed data.

User Administrator .
= 2 X - o1 . § 7 D
W =& @ R # € @ B |e & & Y
Prediciive CX Performance Root Cause Cross Domain Integration Inventory Technician User Menitoring Seffings Adaptation i
Fauli Analysis Prediction Predicfion Prediction Correlation Gateway Planning Work Plan Management
File Pre-processor File Post-processor Record Parser
Code Language: Code Snippet Identifier® Description™ Post-processor Name™
‘ ‘ ‘ ‘ | ‘ SamplePostProcessor]]]]
Java v SamplePostProcessor To add alarmStatus field SamplePestProcessor
(7 Clear
16
17
AL sample test
19
20
inta=10;
2
23
B return null;
25
26
27
+ . §
- l > Versions I I Commit]

Figure 4-4 - Record Post-Processor Screen

Data Collection Configuration

Data Collection Configuration include configurations that are applicable for collecting data files from
remote source. Configurations that are active in this tab are considered for data load.

User Administrator Developer
— o
B & B B & 2 P | s w | © 0
& =l =) t
@ R €& @ [84 O v
Predictive Performance Root Cause Cross Domain Integration Inventory Technician User Moanitoring Settings Adaptation
Fault Analysis Prediction Prediction Correlation Gateway Planning Waork Plan Management

Collection Time Configure New Collection
Cron Pattern* (0400%*? | Job Status (JED o HE’“ b ‘
‘ Select Interface ~ | Collection Status (JEP
Source Configuration I e — I I cancel]
Interface Name User Name Compression Collection Status
SFTP testCollection1 bindiyal NONE ACTIVE @ ‘ Va ‘ o
CUSTOM customTesting NONE INACTIVE @ ‘ Vi ‘ o
EMAIL amulyal festing NONE INACTIVE @ ‘ 2 ‘ [
KAFKA amulya ACTVE D l7 | @
KAFKA reshmi INACTIVE (_:@ ‘ Vi ‘ i}
Figure 4-5 - Data Collection & Configuration
Page |6

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

—
avanseus

Data Load Process

Data load is a 3-phase process that involves data collection, data extraction and data transformation
& loading.

Data Collection

Data collection takes place in CAN module, where data is collected in the form of batch or stream.
Data collection include configurations that are applicable for collecting data files from remote source.

Data Extraction

Data extraction takes place in Batch Handler. Collected files from CAN module are passed to Batch
Handler GRPC; where the file is converted into list of records after applying certain operations such
as file pre-processor, file post-processor.

Data Transformation and Loading

Data transformation and loading takes place in Record Processor. List of records from Batch Handler
is sent to Record processor GRPC, where record is converted into CAN compactable processed data
and then stored in database.

Data Data Transformation
collection ollected data—| extraction xtracted data—m and loading
(CAN) (BatchHandler) (RecordProcessar)

Figure 5-1 - 3-Phase Data Load

Block Representation of Data Load
Block diagram shown below describes the data load process. It involves following steps.

1. CAN module collects data from remote sources, stores it in application and passes
information to batch handler.

2. Batch Handler GRPC has one or more running instances where files from CAN module are
equally distributed. Batch Handler processes files in batches and converts it to records.

3. Records from Batch Handler that are received by Record processor GRPC has one or more
running instances which internally has threads equal to batch size specified in batch handler.
Here records are transformed and loaded to database.

Page |7
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

SVSHSEU&

Record Processor

1

Processed Data

—
cessed Datam-
—

Database

Files
from
sources

CAN .

Processed Data

BatchHandler
n

Figure 5-2 - Data Load Process

6 Data Collectionin CAN
Data collection occurs as batches or streams in CAN module.

Data Collection as Batch

Collection of data is triggered at a specified time using cron pattern as a batch. Data collection as
batches is achieved using following interfaces:

e SFTP

e« FTP

e GITHUB
e EMAIL

Data Collection as Stream
Realtime streaming is achieved using following interfaces:
e Secure KAFKA

e 3GPP
¢ Prometheus

Data streaming from remote sources is achieved in CAN module using streaming interfaces. Data as
stream entering CAN module is stored as small chunk files. Chunk files can hold up to 5 minutes data,
later it is sent to data loading.

Page |8
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

SVSHSEUSQ

.

'
Stream of data

Figure 6-1 - Data Collection as Stream

7 Batch Handler GRPC

Batch Handler is a micro-service that is used to parse files by converting it to records in batches.
Batch Handler is initiated from CAN. Output from batch handler is list of records.

Parsed File-pPre processed File—» Grouping —Record—» Splitting
parser

BatchHandler GRPC

Record
Processor

Figure 7-1 - Batch Handler GRPC

Batch Handler GRPC internally processes data through following pipeline.

File Data Parser:

File data parser is used to parse file obtained as input from CAN. Format of file that needs to be
parsed is identified from file type configuration in parser screen. The file parsers are as follows.

1. Delimited/CSV file parser
2. Excel File parser
3. Custom delimited file parser
4. JSON file parser
5. XML
6. Custom
Pre-Processor Pipeline:

Configured Pre-processor is executed for the complete file. After execution, the processed data is
sent to next pipeline. This is optional pipeline and is skipped if not configured.

Grouping Pipeline:

Processed data is consolidated as per logic configured in file post-processor. This is optional pipeline
and is skipped if not configured.

Splitting Pipeline:

Here single record is split as list of records as per logic configured in file post-processor. This is
optional pipeline and is skipped if not configured.

Page |9
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

—
avanseus

File Configuration Validator:
Data undergoes one level of validation where files for which incorrect columns are configured are
discarded and not passed to record processor.

8 Caches in Batch Handler

Pre-processor cache: This cache contains all pre-processor classes and is refreshed in every 5
minutes. Any changes in pre-processor configuration needs 5 minutes to reflect.

Split and group cache: This cache contains all split and group classes and is refreshed in every 5
minutes. Any changes in file post-processor configuration needs 5 minutes to reflect.

9 Record Processor

Mameg apped record—p- Record Post ecord— Filter -
Engine processor Database
Record processor GRPC

Figure 9-1 - Record Processor GRPC

Record processor GRPC is used to convert record to CAN compatible format. Input Mapper (record
parser tab) configuration is used to convert raw data into CAN specific data and loaded into database.
Record processor GRPC runs through pipelines.

Mapping Engine

Mapping engine involves various operations to convert raw data into CAN compatible data. Mapping
resolution takes place in steps as shown below:

e Direct mapping: It maps the fields that are directly mapped from Ul through either mapping
field name or mapping field code.

¢ Master mapping: Master field ids are stored in DataSource tables. Initially default values are
added to master tables. This transformed data is dumped into respective master tables and id
is fetched. Data extraction mainly takes place from master table caches. Hence, proper
config entry for record processor cache, to avoid junk data from getting loaded and
any data manipulation should follow restart of record processor.

e Aggregator Mapping: It maps aggregator object fields. This is mainly used in prediction
generation.

o Dependent Mapping: Mapping of dependent fields is done here, for which Ul mapping is not
provided.

e Clean up: Data clean up must be done before sending it to next pipeline.

Page |10
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

avanseu&

Master Aggregator Dependent Clean up

Direct Mapping mapping Mapping mapping mapping

Figure 9-2 - Mapping Engine
Record Post Processor

Record post processor that is configured is executed to modify/discard data just before input into
database.

Filter

Alarm inclusion/exclusion is applied to filter out some alarms. This step is applicable only for Alarm
DataSource. For rest of the data load, it is ignored.

10 Record Processor Cache:
Generic Caching:

e Record post-processor cache is refreshed in every 5 minutes. Any changes in record post-
processor needs 5 minutes to reflect.

e Alarm Filter cache is refreshed every 1 hour.

e Classes of mapped field for which code is specified is stored in cache. This is refreshed every
5 minutes.

e Cause standardization cache has standard causes mapping or regex mapping. This is
refreshed every 30 minutes.

Controlled Caching:
Record processor uses lazy population technique to populate cache.

Managing cache size is an important aspect of caching. CAN application has so much data stored,
that it is impossible or unfeasible to store all of these data in the cache. Therefore, a mechanism is
required to manage how much data is stored in the cache. Managing the cache size is typically done
by evicting data from the cache, to make space for new data using least accessed eviction
technique. Least accessed eviction means that the cache values that have been accessed the least
number of times are evicted first. The caches below use controlled caching for storing data:

e Event file format cache is refreshed every 5 minutes.

e Respective master tables are also stored as cache that is not refreshed, so data
manipulation in collections of any master tables requires restart of Record processor.
By default, this cache contains 500000 entries and stores ids.

e Any other configurations to this cache can be done in recordProcessorCache field of Config
table currently this is not visible in Ul. Field size denotes size of cache and fields to be stored
in cache are inside fields.

Note: Fields denoted in this config entry is used for caching, to avoid generic default values
and use existing master table entry fields. List must be checked thoroughly before starting
data load. Any changes to RecordProcessorCache entry in config table requires restart
of record processor.

{

Page |11
Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

BVSHSQU&

"_id":Objectld("63861da42510e142e21b4ca5"),
"key":"recordProcessorCache”,
"value":{

"default":{
"size":Numberint(100000),
h

"Cause":{
"size":Numberint(50000),
"fields":[
"serviceAffecting",
"domain”,

"priority"

]

h

"OfficeCode":{
"size":Numberint(50000),
"fields™:[
"officeCodePriority"

]

h

"Equipment":{
"size":Numberint(50000),

}

}

}

11 Audit of Parsed Files

To monitor data load process audit of each parsed file is maintained in ParserAudit table. Parser Audit
has following fields:

1. fileParsed: Name of the file that is parsed.

2. completed: This denotes the state of file Parsing. It is false when parsing is not complete and
true when parsing completes.

3. startTime: Time at which parsing has started.

4. endTime: Time at which parsing is complete (This time is current time when parsing is in
progress).

5. dataSource: The DataSource of file that is loaded. Example: Alarms, Performance counter
etc.

6. subDataSource: This shows the sub datasource.

7. aggregatedRecords: This is number of records inserted after the duplicate records and
filtered records are discarded.

Page |12

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

BVSHSQU&

10.

11.
12.
13.
14.
15.
16.

discardedRecords: Records that are discarded from rejections involving discarded category.
Example: no Equipment, No cause etc.

discardedRecordsCategory: This contains list of error code and corresponding humber of
discarded record count for all category that are discarded.

duplicateRecords: To maintain the uniqueness of data load, unique index can be added to a
field or set of fields on DataSource table. This count signifies records that are not inserted due
to existing entry in table.

filteredRecords: This count is the filtered count based on alarm inclusion or exclusion added.
groupedRecords: The number of records after grouping/consolidation.

splittedRecords: The number of records after splitting single record into multiple records.
inputRecords: The number of lines or records in file.

totalRecords: Number of records in total after split and group operation is applied on the file.
trueRecords: Number of records that are correct after applying split and group and the ones
which are not discarded.

Page |13

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

	Table of Contents
	1 Introduction
	2 Table Description
	Reference Table
	Transaction Table

	3 List of Indices
	4 Configuration for Data Load from UI
	Input Mapper Configuration
	Data Collection Configuration

	5 Data Load Process
	Data Collection
	Data Extraction
	Data Transformation and Loading
	Block Representation of Data Load

	6 Data Collection in CAN
	Data Collection as Batch
	Data Collection as Stream

	7 Batch Handler GRPC
	File Data Parser:
	Pre-Processor Pipeline:
	Grouping Pipeline:
	Splitting Pipeline:
	File Configuration Validator:

	8 Caches in Batch Handler
	9 Record Processor
	Mapping Engine
	Record Post Processor
	Filter

	10 Record Processor Cache:
	Generic Caching:
	Controlled Caching:

	11 Audit of Parsed Files

