
[image:]

CAN MIGRATION
Migration from Version 5.0 to 5.5

REVISION HISTORY

	Version
	Date
	Change description
	Created by
	Updated by
	Reviewed by

	V 1.0
	July, 2021
	Initial Release
	Sunil
	Sandeep Singh
	Chiranjib

Table of Contents
1.	Objective	3
2.	Update the database by adding new entries, removing or updating the existing entries to the existing collections	3
2.1.	Changes related to Predicted Fault	3
2.2.	Changes related to Excel Page Configuration	12
2.3.	Changes related to Pre Processor	13
2.4.	Changes related to Post Processor	14
2.5.	Changes related to Event File Format	14
2.6.	Changes related to PredictedFaultToTicketMapping	15
2.7.	Changes related to Config Entry	16
2.8.	Changes related to ROE	18
3.	Update the database with new collections	21
4.	Addition of new config entries in Config collection	21
4.1.	Ticket Correlation Prediction	21
4.2.	Performance Prediction Configuration	25
4.3.	Weather Configuration	25
5.	Addition of new entries in DefaultComplexCodeRoe collection	26
6.	Addition of new entries to the config.properties	27
7.	Update the new build of CAN and CAS in the Tomcat Server	28

[bookmark: _Toc80127519]Objective
This document gives step by step procedure to upgrade the CAN 5.0 environment to CAN 5.5.
Note: Please take the dB backup before doing the following changes.
This document covers the following updates:
A. Updating the Object reference id in PredictedFault collection.
B. Removal of a few packages from the ExcelPageConfiguration,PredictedFaultToTicketMapping, PredictedFaultToTicketMappingTemplate, Preprocessor, PreProcessorTemplate, PostProcessorTemplate, Postprocessor, PostProcessorTemplate, EventFileFormat and EventFileFormatTemplate collection.
C. Few more default values were added to the existing Cause category object in the Config collection and updated formula for calculating the Prediction slots and Cluster bit sequence length in the Config collection. We have also added a few more default values for the ROE Policy Configuration.
D. ROE related changes in the data model.
E. New entries were added to the Config collection related to Ticket Correlation Prediction and Prediction configuration.
F. New entries were added to the DefaultComplexCodeROE collection.
G. Addition of new entries in the config.properties file which are related to SSL/TLS MongoDB configuration.
[bookmark: _Toc80127520]Update the database by adding new entries, removing or updating the existing entries to the existing collections
[bookmark: _Toc80127521]Changes related to Predicted Fault
Earlier, we were keeping reference id of other collections as JSON Object format in the PredictionFault collection. Now, we will use String format to store the reference id. This is to support the data model with newer versions of Mongo API. An example of an older version and a newer version of equipmentComponent field in the PredictedFault collection is shown below.

	Older Version
	Newer Version

	"equipmentComponent" : {
 "networkType" : "Transmission_Network",
 "excluded" : false,
 "_id" : {
 "timestamp" : 1558077409.0,
 "machineIdentifier" : 13410368.0,
 "processIdentifier" : -11661.0,
 "counter" : 5145700.0
 },
 "name" : "AN0032-7G736",
 "enabled" : true
 },

	"equipmentComponent" : {
 "networkType" : "Transmission_Network",
 "excluded" : false,
 "_id" : "5cde5fdfcca040d2734e7b0c",
 "name" : "AN0032-7G736",
 "enabled" : true
 },

Add the below indices before running the update scripts.
Notes: You could keep or delete the above created indices after running the update scripts.
db.PredictedFault.createIndex({"equipmentComponent.name":1});
db.PredictedFault.createIndex({"cause.name":1});
db.PredictedFault.createIndex({"equipmentType.name":1});
db.PredictedFault.createIndex({"zone.name":1});
db.PredictedFault.createIndex({"nation.name":1});
db.PredictedFault.createIndex({"division.name":1});
db.PredictedFault.createIndex({"region.name":1});
db.PredictedFault.createIndex({"customer.name":1});
db.PredictedFault.createIndex({"networkElement.name":1});
db.PredictedFault.createIndex({"officeCode.name":1});
db.PredictedFault.createIndex({"networkType.name":1});
db.PredictedFault.createIndex({"equipment.name":1});
db.PredictedFault.createIndex({"domain.name":1});
db.PredictedFault.createIndex({"item.name":1});

/*update equipmentComponent._id in PredictedFault collection*/

var count = db.EquipmentComponent.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total EquipmentComponent to update ==> "+count);
db.EquipmentComponent.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"equipmentComponent.name":field_name}).update({"$set":{"equipmentComponent._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 EquipmentComponents");
 print("Remaining EquipmentComponent to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" EquipmentComponents");
}

/*Update cause._id in PredictedFault collection*/

var count = db.Cause.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Cause to update ==> "+count);
db.Cause.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"cause.name":field_name}).update({"$set":{"cause._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 causes");
 print("Remaining Cause to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" causes");
}

/*Update equipmentType._id in PredictedFault collection*/

var count = db.EquipmentType.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total EquipmentType to update ==> "+count);
db.EquipmentType.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"equipmentType.name":field_name}).update({"$set":{"equipmentType._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 EquipmentTypes");
 print("Remaining EquipmentType to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" EquipmentTypes");
}

/*Update zone._id in PredictedFault collection*/

var count = db.Zone.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Zone to update ==> "+count);
db.Zone.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"zone.name":field_name}).update({"$set":{"zone._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Zones");
 print("Remaining Zone to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Zones");
}

/*Update nation._id in PredictedFault collection*/

var count = db.Nation.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Nation to update ==> "+count);
db.Nation.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"nation.name":field_name}).update({"$set":{"nation._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Nations");
 print("Remaining Nation to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Nations");
}

/*To update division._id in PredictedFault collection*/

var count = db.Division.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Division to update ==> "+count);
db.Division.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"division.name":field_name}).update({"$set":{"division._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Divisions");
 print("Remaining Division to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Divisions");
}

/*Update region._id in PredictedFault collection*/

var count = db.Region.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Region to update ==> "+count);
db.Region.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"region.name":field_name}).update({"$set":{"region._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Regions");
 print("Remaining Region to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Regions");
}

/*Update customer._id in PredictedFault collection*/

var count = db.Customer.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Customer to update ==> "+count);
db.Customer.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"customer.name":field_name}).update({"$set":{"customer._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Customers");
 print("Remaining Customer to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Customers");
}

/*Update networkElement._id in PredictedFault collection*/

var count = db.NetworkElement.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total NetworkElement to update ==> "+count);
db.NetworkElement.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"networkElement.name":field_name}).update({"$set":{"networkElement._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 NetworkElements");
 print("Remaining NetworkElement to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" NetworkElements");
}

/*To update officeCode._id in PredictedFault collection*/

var count = db.OfficeCode.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total OfficeCode to update ==> "+count);
db.OfficeCode.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"officeCode.name":field_name}).update({"$set":{"officeCode._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 OfficeCodes");
 print("Remaining OfficeCode to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" OfficeCodes");
}

/*Update networkType._id in PredictedFault collection*/
var count = db.NetworkType.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total NetworkType to update ==> "+count);
db.NetworkType.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"networkType.name":field_name}).update({"$set":{"networkType._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 NetworkTypes");
 print("Remaining NetworkType to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" NetworkTypes");
}

/*Update equipment._id in PredictedFault collection*/

var count = db.Equipment.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Equipment to update ==> "+count);
db.Equipment.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"equipment.name":field_name}).update({"$set":{"equipment._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Equipments");
 print("Remaining Equipment to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Equipments");
}

/*Update domain._id in PredictedFault collection*/

var count = db.Domain.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Domain to update ==> "+count);
db.Domain.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"domain.name":field_name}).update({"$set":{"domain._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Domains");
 print("Renaming Domain to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Domains");
}

/*Update item._id in PredictedFault collection*/

var count = db.Item.find().count();
var i = 0;
var bulk = db.PredictedFault.initializeUnorderedBulkOp();
print("Total Item to update ==> "+count);
db.Item.find().forEach(function(doc){
 var field_id = doc._id.valueOf();
 var field_name = doc.name;
 bulk.find({"item.name":field_name}).update({"$set":{"item.$._id":field_id}});
 count--;
 i++;
 if(i == 50){
 bulk.execute();
 print("Bulk operations executed for 50 Items");
 print("Remaining Item to update ==> " + count);
 bulk = db.PredictedFault.initializeUnorderedBulkOp();
 i = 0;
 }
});
if(i> 0){
 bulk.execute();
 print("Bulk operations executed for last " + i +" Items");
}

[bookmark: _Toc80127522]Changes related to Excel Page Configuration
Remove the statement "package com.avanseus.generated.complexCodeExcelReport;\n\n" from "complex" field and to remove the statement(if exists) "package com.avanseus.generated.columnConfig;\n\n" from "generatedCodeHeaderConfig" field in the ExcelPageConfiguration collection, execute the below script on "ExcelPageConfiguration" collection.
Run the MongoDB script (shown below) to apply the above mentioned changes:
db.ExcelPageConfiguration.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var complex = "";
 var isComplexFieldExists = false;
 var generatedCodeHeaderConfig = "";
 var isGeneratedCodeHeaderConfigExists = false;
 var newColumnConfigurations = doc.columnConfigurations;
 for (var i = 0; i < doc.columnConfigurations.length; i++) {
 if (doc.columnConfigurations[i].complex != undefined) {
 complex = doc.columnConfigurations[i].complex;
 complex = complex.replace(/package com.avanseus.generated.complexCodeExcelReport;\n\n/g, "");
 newColumnConfigurations[i].complex = complex;
 isComplexFieldExists = true;
 }
 if (doc.columnConfigurations[i].generatedCodeHeaderConfig != undefined) {
 generatedCodeHeaderConfig = doc.columnConfigurations[i].generatedCodeHeaderConfig;
 generatedCodeHeaderConfig = generatedCodeHeaderConfig.replace(/package com.avanseus.generated.columnConfig;\n\n/g, "");
 newColumnConfigurations[i].generatedCodeHeaderConfig = generatedCodeHeaderConfig;
 isGeneratedCodeHeaderConfigExists = true;
 }
 }
 if (isComplexFieldExists || isGeneratedCodeHeaderConfigExists) {
 db.ExcelPageConfiguration.updateOne({"_id": objectId},
 {
 $set:
 {"columnConfigurations": newColumnConfigurations}
 });
 }
});
[bookmark: _Toc80127523]Changes related to Pre Processor
Remove the package com.mongodb.util.JSON and com.avanseus.database.mongo.MongoPersistenceManager from the Preprocessor and PreProcessorTemplate collection.
db.Preprocessor.find({}).forEach(function (doc) {
 var objectId = doc._id;

 var generatedJavaCode = doc.generatedJavaCode;
 generatedJavaCode = generatedJavaCode.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g, "");
 generatedJavaCode = generatedJavaCode.replace(/import com.mongodb.util.JSON;\n/g, "");

 db.Preprocessor.updateOne({"_id": objectId}, {$set: {"generatedJavaCode": generatedJavaCode}});
});

db.PreProcessorTemplate.find({}).forEach(function (doc) {
 var objectId = doc._id;

 var templateCodeSnippet = doc.templateCodeSnippet;
 templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g, "");
 templateCodeSnippet = templateCodeSnippet.replace(/import com.mongodb.util.JSON;\n/g, "");

 db.PreProcessorTemplate.updateOne({"_id": objectId}, {$set: {"templateCodeSnippet": templateCodeSnippet}});
});
[bookmark: _Toc80127524]Changes related to Post Processor
Remove the package com.mongodb.util.JSON and com.avanseus.database.mongo.MongoPersistenceManager from the Postprocessor and PostProcessorTemplate collection.
db.Postprocessor.find({}).forEach(function (doc) {
 var objectId = doc._id;

 var generatedCode = doc.generatedCode;
 generatedCode = generatedCode.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g, "");
 generatedCode = generatedCode.replace(/import com.mongodb.util.JSON;\n/g, "");

 db.Postprocessor.updateOne({"_id": objectId}, {$set: {"generatedCode": generatedCode}});
});

db.PostProcessorTemplate.find({}).forEach(function (doc) {
 var objectId = doc._id;

 var templateCodeSnippet = doc.templateCodeSnippet;
 templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g, "");
 templateCodeSnippet = templateCodeSnippet.replace(/import com.mongodb.util.JSON;\n/g, "");

 db.PostProcessorTemplate.updateOne({"_id": objectId}, {$set: {"templateCodeSnippet": templateCodeSnippet}});
});
[bookmark: _Toc80127525]Changes related to Event File Format
Remove the package com.mongodb.util.JSON and com.avanseus.database.mongo.MongoPersistenceManager from the EventFileFormat and EventFileFormatTemplate collection. Also, add a few mandatory fields to the EventFileFormat Collection.
db.EventFileFormat.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var mappingInformation = "";
 var generatedCode = "";
 var newMappingInformation = doc.mappingInformation;

 for (var i = 0; i < doc.mappingInformation.mapping.length; i++) {
 if (doc.mappingInformation.mapping[i].generatedCode != undefined) {
 generatedCode = doc.mappingInformation.mapping[i].generatedCode;
 generatedCode = generatedCode.replace(/import com.mongodb.util.JSON;\n/g, "");
 generatedCode = generatedCode.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g, "");
 newMappingInformation.mapping[i].generatedCode = generatedCode;
 }
 }

 db.EventFileFormat.updateOne({"_id": objectId},
 {
 $set: {"mappingInformation": newMappingInformation}
 });
});

db.EventFileFormatTemplate.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var templateCodeSnippet = doc.templateCodeSnippet;
 templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g, "");
 templateCodeSnippet = templateCodeSnippet.replace(/import com.mongodb.util.JSON;\n/g, "");
 db.EventFileFormatTemplate.updateOne({"_id": objectId}, {$set: {"templateCodeSnippet": templateCodeSnippet}});
});
[bookmark: _Toc80127526]Changes related to PredictedFaultToTicketMapping
Remove the package com.mongodb.util.JSON from the PredictedFaultToTicketMapping and PredictedFaultToTicketMappingTemplate collection.
Run the MongoDB script (shown below) to apply the above mentioned changes:
db.PredictedFaultToTicketMappingTemplate.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var templateName = doc.templateName
 if (templateName == "mappingFieldTemplate") {
 var templateCodeSnippet = doc.templateCodeSnippet;
 templateCodeSnippet = templateCodeSnippet.replace(/import com.mongodb.util.JSON;\n/g, "");
 db.PredictedFaultToTicketMappingTemplate.updateOne({"_id": objectId}, {$set: {"templateCodeSnippet": templateCodeSnippet}});
 }
});

db.PredictedFaultToTicketMapping.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var mappingInformation = "";
 var generatedCode = "";
 var newMappingInformation = doc.mappingInformation;
 for (var i = 0; i < doc.mappingInformation.mapping.length; i++) {
 if (doc.mappingInformation.mapping[i].generatedCode != undefined) {
 generatedCode = doc.mappingInformation.mapping[i].generatedCode;
 generatedCode = generatedCode.replace(/import com.mongodb.util.JSON;\n/g, "");
 newMappingInformation.mapping[i].generatedCode = generatedCode;
 }
 }
 db.PredictedFaultToTicketMapping.updateOne({"_id": objectId},
 {
 $set:
 {"mappingInformation": newMappingInformation}
 });
});
[bookmark: _Toc80127527]Changes related to Config Entry
We have added a few more default values (Transmission, Configuration and External) along with Infra and Hardware to the cause category object in the Config collection. Remove the valuePossibilities field from this object. We have updated the formula for calculating the Prediction slots and Clustered bit sequence length.
Run the below MongoDB script to apply the above mentioned changes:
db.Config.find().forEach(function (doc) {
 var objectId = doc._id;
 if (doc.key === "causeCategory") {
 var noOfDefaults = 5;
 var existingValue = doc.value.split(',');
 var limit = doc.noOfDefaults;
 existingValue.splice(2, 0, "TRANSMISSION", "CONFIGURATION", "EXTERNAL");
 var finalValue = existingValue.join(",");
 db.Config.updateOne({_id: objectId, key: "causeCategory"},
 {
 $unset: {valuePossibilities: 1},
 $set: {noOfDefaults: noOfDefaults, value: finalValue}
 }
)
 }

 if (doc.key === "roeParameterOptions") {
 var value = doc.value;
 value["autoTicketCorrelation"] = "Ticket-correlation";
 value["historyWorkOrders"] = "Work order count";
 value["serviceAffecting"] = "Service impacting";
 value["rarity"] = "Rarity";
 value["causeCategory"] = "Cause category";

 var parameterTypeMap = {
 "autoTicketCorrelation": {
 "parameterType": "NO_LIMIT",
 "referenceClass": "com.avanseus.roe.util.TicketCorrelationLimitLogic"
 }
 };
 db.Config.updateOne({"_id": objectId}, {$set: {"value": value, "parameterTypeMap": parameterTypeMap}});
}

 if (doc.key === "predictionSlots") {
 var predictionSlotsFormula = "var predictionIntervalDays=0, slotLength=0, calculatedResult=0;\nif(document.getElementById(\"predictionIntervalDays\").getAttribute(\"value\")!=undefined && document.getElementById(\"predictionIntervalDays\").getAttribute(\"value\")!=null) {\n predictionIntervalDays = document.getElementById(\"predictionIntervalDays\").getAttribute(\"value\");\n}\nif(document.getElementById(\"slotLength\").getAttribute(\"value\")!=undefined && document.getElementById(\"slotLength\").getAttribute(\"value\")!=null) {\n slotLength = document.getElementById(\"slotLength\").getAttribute(\"value\");\n}\nif(predictionIntervalDays!=0 && slotLength!=0)\n{\n var firstFactor=predictionIntervalDays;\n var secondFactor=slotLength;\n calculatedResult= (Math.ceil(firstFactor/secondFactor))\n}\nelse\n{\n calculatedResult=0;\n}";
 db.Config.updateOne({_id: objectId, key: "predictionSlots"},
 {$set: {formula: predictionSlotsFormula}}
)
 }

 if (doc.key === "clusterBitSequenceLength") {
 var clusterBitSequenceFormula = "var noOfDays=0, clusterSlotLength=0, calculatedResult=0;\nif(document.getElementById(\"noOfDays\").getAttribute(\"value\")!=undefined && document.getElementById(\"noOfDays\").getAttribute(\"value\")!=null) {\n noOfDays = document.getElementById(\"noOfDays\").getAttribute(\"value\");\n}\nif(document.getElementById(\"clusterSlotLength\").getAttribute(\"value\")!=undefined && document.getElementById(\"clusterSlotLength\").getAttribute(\"value\")!=null) {\n clusterSlotLength = document.getElementById(\"clusterSlotLength\").getAttribute(\"value\");\n}\nif(noOfDays!=0 && clusterSlotLength!=0)\n{\n var firstFactor=noOfDays;\n var secondFactor=1440/clusterSlotLength;\n calculatedResult= (Math.round(firstFactor*secondFactor))\n}\nelse\n{\n calculatedResult=0;\n}";
 db.Config.updateOne({_id: objectId, key: "clusterBitSequenceLength"},
 {$set: {formula: clusterBitSequenceFormula}}
)
 }
if (doc.key === "predictionType") {
 db.Config.updateOne({_id: objectId, key: "predictionType"},
 {$set: {value: "ALARM"}
 })
 }
});

/*update the fault key sequence*/

db.Config.update({key: "faultKeySequence"},
 {
 $set:
 {
 value:
 {
 "EquipmentComponent": "1",
 "Cause": "2",
 "SubRootCause": "3"
 }
 }
});
[bookmark: _Toc80127528]Changes related to ROE
Data model of ROE has been changed. We are creating the ROE policy configuration collection by using specific policy names. In the below script please replace the policy name with the relevant policy name. Execute the below script in the same sequence as they appear below in this document.
/*Take the backup of existing ROE config collections*/
db.RoeWeightageConfig.aggregate([{$out:"RoeWeightageConfig_50"}]);
db.RoeConfig.aggregate([{$out:"RoeConfig_50"}]);

/* RoePolicyConfiguration table creation */
var policyName = <policy_name>; //give the relevant policy name
var status = true;
db.RoeWeightageConfig.update({}, {$rename: {"roeParameterList": "roeParameters"}}, {multi: true});
db.RoeWeightageConfig.find({}).limit(1).forEach(function (roeWeightageConfig) {
 roeWeightageConfig["name"] = policyName;
 delete roeWeightageConfig["_id"];
 roeWeightageConfig["isDefault"] = false;
 roeWeightageConfig["enabled"] = false;
 var roeParameters = roeWeightageConfig["roeParameters"]
 for (var i = 0; i < roeParameters.length; i++) {
 roeParameters[i].isDefault = false;
 roeParameters[i].parameterType = "NORMAL";
 }
 roeWeightageConfig["roeParameters"] = roeParameters;
 status = roeWeightageConfig["status"];
 delete roeWeightageConfig["status"];
 db.RoePolicyConfiguration.insert(roeWeightageConfig);
});
db.RoeWeightageConfig.drop();

/* RoeConfig table creation */
db.RoeConfig.renameCollection("RoeSheetConfiguration");
var configId = ObjectId("60a23e449540692787d9eb52");
db.RoeConfig.insert({_id: configId, roeSheetConfigurationIds: [], "status": status});

/* RoeSheetConfiguration table creation */
var policyId = db.RoePolicyConfiguration.find({"name": policyName}).limit(1).next()["_id"].valueOf();
db.RoeSheetConfiguration.find().forEach(function (roeSheetConfiguration) {
 var roePolicySelectionInformations = [];
 var roePolicySelectionInformation = {};
 roePolicySelectionInformation["roePolicyConfiguration_id"] = policyId;
 roePolicySelectionInformation["numberOfPrimaryPredictionSelectionRatio"] = 100.0;
 roePolicySelectionInformation["priority"] = 1.0;
 roePolicySelectionInformations.push(roePolicySelectionInformation);
 db.RoeSheetConfiguration.update({_id: roeSheetConfiguration["_id"]}, {$set: {"roePolicySelectionInformations": roePolicySelectionInformations}});
 db.RoeConfig.update({_id: configId}, {$addToSet: {"roeSheetConfigurationIds": roeSheetConfiguration["_id"].valueOf()}});
});

/*Update the package in RoeConfigTemplate collection with the below script*/

db.RoeConfigTemplate.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var templateName = doc.templateName;

 var templateCodeSnippet = doc.templateCodeSnippet;
 templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.roe.IRoeParameterValueLimit;\n/g, "import com.avanseus.roenew.IRoeParameterValueLimit;\nimport com.avanseus.roe.util.*;\n");
 templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.model.can.RoeParameterLimit;\n/g, "import com.avanseus.model.can.roe.RoeParameterLimit;\n");
templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g,"");

 if (templateName == "roeValueCodeTemplate") {
 templateCodeSnippet = templateCodeSnippet.replace(/import com.avanseus.roe.IRoeParameterValue;\n/g, "import com.avanseus.roenew.IRoeParameterValue;\n");
 }
 db.RoeConfigTemplate.updateOne({"_id": objectId}, {$set: {"templateCodeSnippet": templateCodeSnippet}});
});

/*Update the package in DefaultComplexCodeROE collection with the below script*/

db.DefaultComplexCodeROE.find({}).forEach(function (doc) {
 var objectId = doc._id;
 var generatedCode = "";
 generatedCode = doc.generatedCode_parameterValue;
 generatedCode = generatedCode.replace(/import com.avanseus.roe.IRoeParameterValue;\n/g, "import com.avanseus.roenew.IRoeParameterValue;\n");
 generatedCode = generatedCode.replace(/import com.avanseus.roe.IRoeParameterValueLimit;\n/g, "import com.avanseus.roenew.IRoeParameterValueLimit;\nimport com.avanseus.roe.util.*;\n");

 generatedCode = generatedCode.replace(/import com.avanseus.model.can.RoeParameterLimit;\n/g, "import com.avanseus.model.can.roe.RoeParameterLimit;\n");
generatedCode = generatedCode.replace(/import com.avanseus.database.mongo.MongoPersistenceManager;\n/g,"");

 db.DefaultComplexCodeROE.updateOne({"_id": objectId},
 {
 $set:
 {"generatedCode_parameterValue": generatedCode}
 });
});
[bookmark: _Toc80127529]Update the database with new collections
Put the new collections in the database. The new collections are available in the “MasterTables” directory of the release repository. The list of collections to be imported into the database for the new features are:
· ServicenowConfig
· ServicenowFieldValue
· ServicenowPredictedFaultToTicketMapping
· ServicenowPredictedFaultToTicketMappingTemplate
· DefaultPolicyConfiguration
· RoePolicyConfiguration
· WebServiceConfig
· KafkaConfigProperties
Please run the import script (shown below) to load the new collections:
1. mongoimport --db <db> --collection ServicenowConfig --username <username> --password <password> --file ServicenowConfig.json
2. mongoimport --db <db> --collection ServicenowFieldValue --username <username> --password <password> --file ServicenowFieldValue.json
3. mongoimport --db <db> --collection ServicenowPredictedFaultToTicketMapping --username <username> --password <password> --file ServicenowPredictedFaultToTicketMapping.json
4. mongoimport --db <db> --collection ServicenowPredictedFaultToTicketMappingTemplate --username <username> --password <password> --file ServicenowPredictedFaultToTicketMappingTemplate.json
5. mongoimport --db <db> --collection DefaultPolicyConfiguration --username <username> --password <password> --file DefaultPolicyConfiguration.json
6. mongoimport --db <db> --collection RoePolicyConfiguration --username <username> --password <password> --file RoePolicyConfiguration.json
7. mongoimport --db <db> --collection WebServiceConfig --username <username> --password <password> --file WebServiceConfig.json
8. mongoimport --db <db> --collection KafkaConfigProperties --username <username> --password <password> --file KafkaConfigProperties.json
[bookmark: _Toc80127530]Addition of new config entries in Config collection
Add the below config entries in the Config collection. These config entries are related to:
[bookmark: _Toc80127531]Ticket Correlation Prediction
db.Config.insert({
 "key" : "manualTicketThresholdAlarmDuration",
 "value" : "10",
 "modules" : "CAN",
 "title" : "Manual Ticket Threshold Alarm Duration",
 "max" : 30.0,
 "min" : 0.0,
 "type" : "Int",
 "group" : "Ticket Correlation Prediction" ,
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.manualTicketThresholdAlarmDuration",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.822+0000")
});
db.Config.insert({
 "key" : "autoTicketThresholdAlarmDuration",
 "value" : "2",
 "modules" : "CAN",
 "title" : "Auto Ticket Threshold Alarm Duration",
 "max" : 2.0,
 "min" : 0.0,
 "type" : "Int",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.autoTicketThresholdAlarmDuration",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.822+0000")
});
db.Config.insert({
 "key" : "ticketPredictionFilterRule",
 "title" : "Filter Rule",
 "value" : "0,0",
 "modules" : "CAN",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(1),
 "type" : "String",
 "displayLabel" : "config.ticketPredictionFilterRule",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.837+0000")
});
db.Config.insert({
 "key" : "applyFilterRule",
 "value" : "false",
 "modules" : "CAN",
 "type" : "boolean",
 "group" : "Ticket Correlation Prediction",
 "title" : "Apply Filter Rule",
 "displayLabel" : "config.applyFilterRule",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.821+0000")
});
db.Config.insert({
 "key" : "manualTicketPredictionLevel",
 "value" : "OFFICE_CODE",
 "title" : "Manual Ticket Prediction Level",
 "displayOrder" : NumberInt(6),
 "group" : "Ticket Correlation Prediction",
 "type" : "DropDown",
 "enumName" : "com.avanseus.model.can.ManualTicketPredictionLevel",
 "modules" : "CAN",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.824+0000")
});
db.Config.insert({
 "key" : "ticketPredictionSlotLength",
 "value" : "2",
 "modules" : "CAN",
 "title" : "Slot Length",
 "max" : 4.0,
 "min" : 1.0,
 "type" : "Int",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.ticketPredictionSlotLength",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.822+0000")
});
db.Config.insert({
 "key" : "ticketPredictionBitSequenceLength",
 "value" : "50",
 "modules" : "CAN",
 "title" : "Bit Sequence Length",
 "max" : 100.0,
 "min" : 50.0,
 "type" : "Int",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.ticketPredictionBitSequenceLength",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.822+0000")
});
db.Config.insert({
 "key" : "ticketPredictionIntervalDays",
 "value" : "14",
 "modules" : "CAN",
 "title" : "Prediction Interval days",
 "max" : 14.0,
 "min" : 7.0,
 "type" : "Int",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.ticketPredictionIntervalDays",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.822+0000")
});
db.Config.insert({
 "key" : "ticketPredictionThresholdProbability",
 "title" : "Prediction Threshold Probability",
 "value" : "0.1",
 "modules" : "CAN",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(17),
 "type" : "String",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.837+0000")
});
db.Config.insert({
 "key" : "ticketPredictionBitThreshold",
 "value" : "4",
 "modules" : "CAN",
 "title" : "Bit Threshold Length",
 "max" : 10.0,
 "min" : 3.0,
 "type" : "Int",
 "group" : "Ticket Correlation Prediction",
 "displayOrder" : NumberInt(3),
 "displayLabel" : "config.ticketPredictionBitThreshold",
 "modifiedOn" : ISODate("2020-11-19T13:51:36.822+0000")
});
db.Config.insert({
 "key": "ticketPredictionSparsityMultiplier",
 "value": "2",
 "modules": "CAN",
 "title": "Sparsity multiplier",
 "type": "DropDown",
 "group": "Ticket Correlation Prediction",
 "displayOrder": NumberInt(3),
 "displayLabel": "settings.predictionAlgorithm.sparsityMultiplier",
 "displayName": "Sparsity multiplier",
 "valuePossibilities": [
 {
 "valueDisplayLabel": "settings.predictionAlgorithm.sparsityMultiplierMin",
 "valueTitle": "Sparsity Multiplier Minimum",
 "actualValue": 2.0
 },
 {
 "valueDisplayLabel": "settings.predictionAlgorithm.sparsityMultiplierAvg",
 "valueTitle": "Sparsity Multiplier Average",
 "actualValue": 3.0
 },
 {
 "valueDisplayLabel": "settings.predictionAlgorithm.sparsityMultiplierMax",
 "valueTitle": "Sparsity Multiplier Maximum",
 "actualValue": 4.0
 }
],
 "enumName": "com.avanseus.model.can.SparsityMultiplier",
 "modifiedOn": ISODate("2020-11-19T13:51:36.822+0000")
});
[bookmark: _Toc80127532]Performance Prediction Configuration
db.Config.insert({
 "key" : "INTERESTED_DATE_OF_PREDICTION_RUN",
 "value" : "20/12/2020"
});

db.Config.insert({
 "key" : "PREDICTION_CONTROLLER_REST_ENDPOINT",
 "value" : "http://avanseuscontrollernode:5052/PredictionController/"
});

db.Config.insert({
 "key" : "INTERESTED_RANGE_OF_PREDICTION_RUN",
 "value" : "30/01/2021 00:00:00-31/01/2021 23:00:00"
});

db.Config.insert({
 "key" : "INTERESTED_RANGE_OF_PREDICTION_RUN_GRANULARITY",
 "value" : "1"
});
[bookmark: _Toc80127533]Weather Configuration
db.Config.insert({
 "key" : "weather_analysis_cron_expression",
 "value" : "0 49 6 1/1 * ? *"
});
[bookmark: _Toc80127534]Addition of new entries in DefaultComplexCodeRoe collection
db.DefaultComplexCodeROE.insert({
 "packageName_parameterValue": "com.avanseus.generated.roeValue",
 "codeClassname_parameterValue": "TicketCorrelation",
 "userCode_parameterValue": "return RoeUtility.getTicketCorrelationRoeValue(dbObject);",
 "generatedCode_parameterValue": "package com.avanseus.generated.roeValue;\nimport com.avanseus.roe.util.*;\nimport com.avanseus.helper.Record;\nimport java.util.List;\nimport com.avanseus.roenew.IRoeParameterValueLimit;\nimport java.util.Map;\nimport com.avanseus.database.mongo.MongoPersistenceManager;\nimport java.util.List;\nimport java.text.ParseException;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.Priority;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.roe.RoeParameterLimit;\nimport com.avanseus.roenew.IRoeParameterValue;\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class AutoTicketPredictionProbability implements IRoeParameterValue {\n\t@Override\n\tpublic Double fetchValue(DBObject dbObject){\n\t return RoeUtility.getTicketCorrelationRoeValue(dbObject); }\n}",
 "parameter": "autoTicketCorrelation"
});

db.DefaultComplexCodeROE.insert({
 "packageName_parameterValue" : "com.avanseus.generated.roeValue",
 "codeClassname_parameterValue" : "WorkOrderCount",
 "userCode_parameterValue" : "return RoeUtility.getWorkOrderRoeValue(dbObject);",
 "generatedCode_parameterValue" : "package com.avanseus.generated.roeValue;\nimport com.avanseus.roe.util.*;\nimport com.avanseus.helper.Record;\nimport java.util.List;\nimport com.avanseus.roenew.IRoeParameterValueLimit;\nimport java.util.Map;\nimport com.avanseus.database.mongo.MongoPersistenceManager;\nimport java.util.List;\nimport java.text.ParseException;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.Priority;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.roe.RoeParameterLimit;\nimport com.avanseus.roenew.IRoeParameterValue;\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class AutoTicketPredictionProbability implements IRoeParameterValue {\n\t@Override\n\tpublic Double fetchValue(DBObject dbObject){\n\treturn RoeUtility.getWorkOrderRoeValue(dbObject);\n\t}\n}",
 "parameter" : "historyWorkOrders"
});

db.DefaultComplexCodeROE.insert({
 "packageName_parameterValue": "com.avanseus.generated.roeValue",
 "codeClassname_parameterValue": "CauseCategory",
 "userCode_parameterValue": "String category =(String) ((DBObject)dbObject.get(\"cause\")).get(\"causeCategory\");\nDouble val =0.0;\nif(category!=null && !category.isEmpty()){\nif(category.equals(\"TRANSMISSION\")){\nval = 1.0;\n}else if(category.equals(\"INFRA\")){\nval = 2.0;\n}else if(category.equals(\"HARDWARE\")){\nval = 3.0;\n}\n}\nreturn val;\n\n",
 "generatedCode_parameterValue": "package com.avanseus.generated.roeValue;\n\n\nimport java.util.List;\nimport com.avanseus.roenew.IRoeParameterValueLimit;\nimport java.util.Map;\nimport java.util.List;\nimport java.text.ParseException;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.Priority;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.roe.RoeParameterLimit;\nimport com.avanseus.roenew.IRoeParameterValue;\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\nimport com.avanseus.roe.util.*;\npublic class PreventinghardwareinfraandTxfaultsintheorder_CauseCategory implements IRoeParameterValue {\n\t\n@Override\n\tpublic Double fetchValue(DBObject dbObject){\n\t\nString category =(String) ((DBObject)dbObject.get(\"cause\")).get(\"causeCategory\");\nDouble val =0.0;\nif(category!=null && !category.isEmpty()){\nif(category.equals(\"TRANSMISSION\")){\nval = 1.0;\n}else if(category.equals(\"INFRA\")){\nval = 2.0;\n}else if(category.equals(\"HARDWARE\")){\nval = 3.0;\n}\n}\nreturn val;\n\t\n}\n}\n",
 "parameter": "causeCategory"
});

db.DefaultComplexCodeROE.insert({
 "packageName_parameterValue": "com.avanseus.generated.roeValue",
 "codeClassname_parameterValue": "ServiceAffecting",
 "userCode_parameterValue": "boolean category =(boolean) ((DBObject)dbObject.get(\"cause\")).get(\"serviceAffecting\");\nreturn category?1.0:0.0;\n\n",
 "generatedCode_parameterValue": "package com.avanseus.generated.roeValue;\nimport com.avanseus.roe.util.*;\nimport com.avanseus.helper.Record;\n\nimport java.util.List;\nimport com.avanseus.roenew.IRoeParameterValueLimit;\nimport java.util.Map;\nimport com.avanseus.database.mongo.MongoPersistenceManager;\nimport java.util.List;\nimport java.text.ParseException;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.Priority;\nimport com.mongodb.DBCursor;\nimport com.mongodb.BasicDBObject;\nimport com.avanseus.model.can.roe.RoeParameterLimit;\nimport com.avanseus.roenew.IRoeParameterValue;\nimport java.util.List;\nimport java.util.regex.Matcher;\nimport java.util.regex.Pattern;\nimport com.mongodb.DBObject;\nimport java.util.Date;\nimport java.util.*;\nimport java.text.SimpleDateFormat;\nimport java.util.Calendar;\npublic class RoePriority implements IRoeParameterValue {\n\t\n@Override\n\tpublic Double fetchValue(DBObject dbObject){\n\tboolean category =(boolean) ((DBObject)dbObject.get(\"cause\")).get(\"serviceAffecting\");\nreturn category?1.0:0.0;\n\n}\n}\n",
 "parameter": "serviceAffecting"
});
[bookmark: _Toc80127535]Addition of new entries to the config.properties
In CAN 5.5, we can have a secure connection between the client and MongoDB with the use of SSL/TLS certificates. Using this we can encrypt all the data which gets transferred between client applications and MongoDB server.
Please add the below properties to the existing config.properties file:
avanseus.mongodb.ssl.enabled=<true/false>
avanseus.mongodb.validHostName=<true/false>
avanseus.mongodb.keystore.path=<Keystore_file_path>
avanseus.mongodb.keystore.password=<Keystore_encrypted_password>

Note: If MongoDB server can be accessed with the domain name then set the validHostName to true. If you’re accessing it with IP address and port number, then set the validHostName to false.
[bookmark: _Toc80127536]Update the new build of CAN and CAS in the Tomcat Server
A. Delete the earlier build from tomcats “webapps” directory. (Both war and the directory)
B. Take a new build of CAN and CAS from 5.0 release and copy to “webapps” directory.
C. Run the Tomcat servers.

Page | 2 	Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

image2.png

image1.png

image3.png
A
BVSHSQU&

