



---

# VENDOR CNF NETWORK FUNCTION INSTALLATION - MOP (METHOD OF PROCEDURE) VMWARE

---

Cognitive Assistant for Networks (CAN) Release 5.5



JULY 6, 2021  
AVANSEUS TECHNOLOGY PVT. LTD.

## REVISION HISTORY

| Version | Date       | Change description | Created by    | Updated by    | Reviewed by |
|---------|------------|--------------------|---------------|---------------|-------------|
| V 1.0   | July, 2021 | Initial Release    | Hemanth/Umesh | Sandeep Singh | Chiranjib   |

## Table of Contents

|                                                                                |          |
|--------------------------------------------------------------------------------|----------|
| <b>1. Caas/PaaS Requirements .....</b>                                         | <b>3</b> |
| <b>2. Pre-Installation Steps (As Applicable) .....</b>                         | <b>3</b> |
| 2.1. Pushing Images to Harbour .....                                           | 3        |
| 2.2. Istio Installation.....                                                   | 4        |
| 2.3. Istio Add-Ons.....                                                        | 4        |
| <b>3. Installation Steps .....</b>                                             | <b>6</b> |
| 3.1. Helm Installation Charts .....                                            | 6        |
| 3.2. Creating Configmaps for the charts .....                                  | 6        |
| 3.3. Creating Persistent Volume .....                                          | 7        |
| <b>4. Post Installation Steps (As Applicable).....</b>                         | <b>8</b> |
| <b>5. Validation Steps.....</b>                                                | <b>9</b> |
| <b>6. Accessing the Application and Monitoring Tools from the Browser.....</b> | <b>9</b> |

## 1. Caas/PaaS Requirements

This section contains all the mandatory prerequisites and cluster requirements to onboard the NF to VMware Telco Cloud Platform:

- Any Linux Based System preferably CentOS, UBUNTU or RHEL.
- Docker v20.10.2 or higher.
- Kubernetes v1.20.0 or higher.
- Istio v1.8 or higher.
- Istio addons (grafana, kiali, prometheus) have to be enabled.
- Secrets (for Harbour or Docker registry).
- Domain Name for hosting the application.
- SSL Certificate Files for the registered Domain.

Note that Avanseus CAN application uses MongoDB as its persistent storage. Importing the default schema into the mongo database is one of the prerequisites which will be discussed in the later section.

## 2. Pre-Installation Steps (As Applicable)

### 2.1.Pushing Images to Harbour

Step 1. Login to harbour registry.

```
$docker login 192.168.100.38
```

Enter the password of the harbour registry (password:VMware1!)

Step 2: Loading the provided packed docker images.

```
$sudo docker load<canapp.tar.gz
$sudo docker load<pyvbi.tar.gz
$sudo docker load<ldap.tar.gz
$sudo docker load<predictionworker.tar.gz
$sudo docker load<predectioncontroller.tar.gz
```

For mongo images we will be using the image provided by the docker hub. Use the below command to load the mongo image:

```
$sudo docker pull mongo:3.4.6
```

Use the below command to check if the images are loaded correctly into the docker.

```
$sudo docker images
```

Output shows all the docker images loaded into the docker.

```
root@telco-harbor:~/AVANSEUS/IMAGES#
root@telco-harbor:~/AVANSEUS/IMAGES# sudo docker images
REPOSITORY                                     TAG      IMAGE ID      CREATED       SIZE
192.168.100.38/avanseus_images/predictioncontroller  1        2dd95225d3c9  5 weeks ago  671MB
predictioncontroller                           1        2dd95225d3c9  5 weeks ago  671MB
192.168.100.38/avanseus_images/predictionworker   1        b28e643bfa41  5 weeks ago  660MB
predictionworker                             1        b28e643bfa41  5 weeks ago  660MB
vbi                                         1        409223ef40e7  5 weeks ago  4.5GB
192.168.100.38/avanseus_images/vbi              <none>   409223ef40e7  5 weeks ago  4.5GB
ldap                                         1        ef867fbc76cd  5 weeks ago  679MB
192.168.100.38/avanseus_images/ldap              1        ef867fbc76cd  5 weeks ago  679MB
192.168.100.38/avanseus_images/canapp           1        8b5deee54194  5 weeks ago  1.17GB
canapp                                       1        8b5deee54194  5 weeks ago  1.17GB
192.168.100.38/avanseus_images/vbi              v1      96ddd31daf73  4 months ago  4.48GB
avanseuscontainer.com/vmware/5.0/pyvbi          v1      96ddd31daf73  4 months ago  4.48GB
goharbor/chartmuseum-photon                   v0.9.0-v1.10.1 0245d66323de  14 months ago  128MB
```

Step 3: Tag the loaded images. Use the below command to tag the loaded images:

```
$sudo docker tag ldap:1 192.168.100.38/avanseus_images/ldap:1
$sudo docker tag mongo:3.4.6 192.168.100.38/avanseus_images/mongo:1
$sudo docker tag vbi:1 192.168.100.38/avanseus_images/vbi:1
$sudo docker tag canapp:1 192.168.100.38/avanseus_images/canapp:1
$sudo docker tag predictionworker:1 192.168.100.38/avanseus_images/predictionworker:1
$sudo docker tag predictioncontroller:1 192.168.100.38/avanseus_images/predictioncontroller:1
```

Step 4: Push the tagged images into Harbour registry.

```
$sudo docker push 192.168.100.38/avanseus_images/ldap:1
$sudo docker push 192.168.100.38/avanseus_images/mongo:1
$sudo docker push 192.168.100.38/avanseus_images/vbi:1
$sudo docker push 192.168.100.38/avanseus_images/canapp:1
$sudo docker push 192.168.100.38/avanseus_images/predictionworker:1
$sudo docker push 192.168.100.38/avanseus_images/predictioncontroller:1
```

Now, all the Docker images have been pushed to the harbour registry and are ready to be used. Login to harbour and check in the user interface to confirm that all the images have been pushed.

## 2.2. Istio Installation

Follow the below steps to install the Istio:

1. You can use the link as a reference to install the Istio:

```
https://istio.io/latest/docs/setup/getting-started/
```

2. Download the Istio installation files using the below command:

```
$curl -L https://istio.io/downloadIstio | sh - //This will download the latest version.
```

3. Move to the Istio package directory.

```
$cd istio-1.9.3
$export PATH=$PWD/bin:$PATH
```

4. Install Istio:

```
$istioctl install --set profile=demo -y
```

5. The installation of Istio is complete. To check all the pods are up, use the below command:

```
$kubectl get all -n istio-system
```

```
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_Files/Helm ]$ 
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_Files/Helm ]$ kubectl get pods -n istio-system
NAME                           READY   STATUS    RESTARTS   AGE
grafana-784c89f4cf-ft9rg      1/1    Running   0          31d
istio-ingressgateway-5bcd9b77f-ttbh2 1/1    Running   0          31d
istiod-7dd96f56f8-9mcbn        1/1    Running   0          31d
jaeger-7f78b6fb65-grwtd       1/1    Running   2          31d
kiali-dc84967d9-86qdd        1/1    Running   0          31d
prometheus-7bfddb8dbf-7x9v8   2/2    Running   0          31d
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_Files/Helm ]$
```

## 2.3. Istio Add-Ons

To install the Istio add-ons, execute the two commands:

```
$kubectl apply -f samples/addons
$kubectl rollout status deployment/kiali -n istio-system
```

**Note:** If there are errors while trying to install the add-ons, try to run the command again. There may be some timing issues which will be resolved, when you run the command again.

The relevant steps/commands that are applicable and to be performed/executed before installing the HELM charts are as follows:

1. Create a namespace.

```
$ kubectl create ns avanseus-workspace
```

2. Enable Istio injection on the desired namespace i.e., avanseus-workspace.

```
$ kubectl label namespace avanseus-workspace istio-injection=enabled
$ kubectl get namespace -L istio-injection
```

(Use this command to check if Istio-injection is enabled or not in the avanseus-workspace).

```
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_Files/Helm ]$ kubectl get namespace -L istio-injection
NAME        STATUS  AGE  ISTIO-INJECTION
avanseus-workspace  Active  32d  enabled
default      Active  32d
istio-system  Active  32d  disabled
kube-node-lease  Active  32d
kube-public   Active  32d
kube-system   Active  32d
nfs-client    Active  32d
tca-system    Active  32d
tkg-system-public  Active  32d
```

3. Installing Metric Server in the cluster.

Go to **kubernetes\_resources/Gateway\_Metric\_HPA/** folder. Use the file “**metric\_server.yaml**” and execute the below command:

```
$ kubectl apply -f metric_server.yaml
```

Alternatively, command:

```
$ kubectl apply -f
https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
```

Use the below command to check, if metric server is running:

```
$kubectl get all -n kube-system|grep metric
```

```
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_Files/Helm ]$ kubectl get all -n kube-system| grep metric
pod/metrics-server-6d74fbf577-mqm6m  1/1  Running  0          13d
service/metrics-server   ClusterIP  100.68.57.83  <none>  443/TCP
deployment.apps/metrics-server  1/1  1          1          13d
replicaset.apps/metrics-server-6d74fbf577 1  1          1          13d
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_Files/Helm ]$
```

4. Secrets (for harbour or docker registry)

Run the below command to create the secret. You can find the config.json file in the Avanseus\_files/Docker\_secrect/ folder.

```
$kubectl create secret generic avanseus-imagepull-secret
--from-file=.dockerconfigjson=Avanseus_files/Docker_secrect/config.json
--type=kubernetes.io/dockerconfigjson -n avanseus-workspace
```

Use below command to check if secret has been created:

```
$kubectl get secrets -n avanzeus-workspace
```

### 3. Installation Steps

#### 3.1. Helm Installation Charts

There are 6 helm charts to be installed while deploying the CAN application. All the required helm charts are present under **Avanzeus\_files/Helm\_Charts/** folder.

The sequences in which the charts have to be installed are as follows:

1. avanzeus-mongo-chart -1 tgz
2. avanzeus-ldapchart-chart 1 tgz
3. avanzeus-pyvbi-chart 1 tgz
4. avanzeus-workerapp-chart 1 tgz
5. avanzeus-controllerapp-chart 1 tgz
6. avanzeus-canmaster-chart 1 tgz

Version 1

Minimum list of values that needs to be overridden per deployment along with explanation on how to derive these values.

Image-names: The image names in the chart have to be overridden with the image names pushed in the harbour registry. Image names can be obtained from the commands used above while pushing the images to the harbour registry.

#### 3.2. Creating Configmaps for the charts

Go to Avanzeus\_files/ConfigMap\_Files/ folder and execute the below command to create the configmap is as follows:

```
$kubectl create configmap controllerconfig --from-file=controller-config/ --namespace=avanzeus-workspace  
$kubectl create configmap workerconfig --from-file=worker-config/ --namespace=avanzeus-workspace  
$kubectl create configmap canconfig --from-file=can-config/ -n avanzeus-workspace
```

```
capv@avensues02-master-control-plane-grwth [ ~ ]$ kubectl get configmap -n avanzeus-workspace  
NAME          DATA   AGE  
canconfig     3      32d  
istio-ca-root-cert 1      32d  
prediction-controller-config 1      13d  
prediction-worker-config 1      13d  
capv@avensues02-master-control-plane-grwth [ ~ ]$
```

#### Note:

- Please update domain details in the config map using kubectl edit configmap command.

```
$kubectl edit configmap canconfig -n avanzeus-workspace
```

Edit the domain details in the canconfig, the domain details have to be filled with domain in which the application will be hosted:

- **avanseus.app.cas.domain and avanseus.app.can.domain as “avanseus.telcocloud.com” or whichever domain name has been provided by the vendor.**

### 3.3.Creating Persistent Volume

Four persistence volumes have to be created for the whole application deployment.

| SL No | Application name             | PVC name   |
|-------|------------------------------|------------|
| 1     | Mongodb(database)            | mongopvc   |
| 2     | CAN-logs                     | canlogpvc  |
| 3     | CAN-prediction related Files | candatapvc |
| 4     | LDAP                         | ldappvc    |

Go to Avanseus\_files/Persistance\_Volume/ folder and execute the below commands for creating persistent volume claims:

```
$ kubectl apply -f mongo_pvc.yaml -n avanseus-workspace
$ kubectl apply -f can_pvc.yaml -n avanseus-workspace
$ kubectl apply -f candatapvc.yaml -n avanseus-workspace
$ kubectl apply -f ldap_pvc.yaml -n avanseus-workspace
```

Verify whether all the 4 PVC are created using:

```
$ kubectl get pvc -n avanseus-workspace
```

```
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_files/Helm_Charts/charts ]$ cd
capv@avensues02-master-control-plane-grwth [ ~ ]$ kubectl get pvc -n avanseus-workspace
NAME      STATUS    VOLUME                                     CAPACITY   ACCESS MODES  STORAGECLASS   AGE
candatapvc Bound    pvc-c2fbe366-b92b-440d-bae4-9045e84050c9  10Gi      RWO          vsphere-sc    32d
canlogpvc  Bound    pvc-c52df91b-6275-415d-9b2d-8d6a4021dbae  5Gi       RWO          vsphere-sc    32d
nfstest1   Bound    testpv                                    4Gi       RWO          nfs-client    32d
vspherepvc Bound    pvc-6c8b8c8a-1906-4e26-bb73-7f04f907e08c  30Gi      RWO          vsphere-sc    32d
capv@avensues02-master-control-plane-grwth [ ~ ]$
```

Follow the order in details to comply with the dependencies between charts.

The order in which charts need to be installed and Commands to install those charts are as follows.

Go to Avanseus\_files/Helm\_Charts/ folder and execute the below command:

```
$ helm install mongo avanseus-mongo-chart.-1.tgz -n avanseus-workspace --set
mongo.container.image=<name_of_the_mongo_image_pushed>
```

In our case <name\_of\_the\_mongo\_image\_pushed> has to be replaced with **192.168.100.38/avanseus\_images/mongo:1**

Notes:

- After creating a mongo chart database has to be restored with master/mandatory tables.  
Please follow the below steps to do the same:

Go to Avanseus\_file/Mongo\_Files/mongodb-linux-x86\_64-3.4.6/bin/ folder and execute the following commands:

```
./mongo <ip_address_of_any_nodes>:30001/admin -u "admin" -p "Avanzeus$0"
use cangeneric
db.createUser({user: "cangeneric", pwd: "Avanzeus$0", roles: ["userAdmin", "dbAdmin",
"readWrite"]});
./mongorestore -h <ip_address_of_any_nodes>:30001 -u cangeneric -p '<password>' -d cangeneric
Avanzeus_file/Mongo_Files/Dump/cangeneric/
```

<ip\_address\_of\_any\_nodes>= ip address of any of the nodes from the cluster.

```
$helm install ldap avanzeus-ldap-chart.-1.tgz -n avanzeus-workspace --set
ldap.container.image=<name_of_the_ldap_image_pushed>
$helm install vbi avanzeus-vbi-chart.-1.tgz -n avanzeus-workspace --set
vbi.container.image=<name_of_the_vbi_image_pushed>
$helm install worker avanzeus-workerapp-chart.-1.tgz -n avanzeus-workspace --set
avanzeus_worker.container.image=<name_of_the_worker_image_pushed>
$helm install controller avanzeus-controllerapp-chart.-1.tgz -n avanzeus-workspace --set
avanzeus_controller.container.image=<name_of_the_controller_image_pushed>
$helm install can avanzeus-canmaster-chart.-1.tgz -n avanzeus-workspace --set
can.container.image=<name_of_the_can_image_pushed>
```

**Note:** Names of the images has to be changed accordingly as they are pushed to the harbour registry.

All Helm charts must follow the helm guidelines shared as part of pre-assessment Questionnaire.

Yes, all the helm charts follow the guidelines mentioned.

#### 4. Post Installation Steps (As Applicable)

The relevant steps/commands that are applicable and to be performed/executed after installing the HELM charts (configuration steps to complete the deployment process):

1. Applying Peer authentication.

Go to **Avanzeus\_files/Helm/** folder and execute the below command:

```
$kubectl apply -f peerAuthentication.yaml -n avanzeus-workspace
```

2. Installing and Configuring Web Server.

Install the NGINX web server on the master node using the command:

```
$yum install -y nginx
$sudo systemctl start nginx
```

**ssl-nginx.conf** and **nginx.conf** files are present in the folder **Avanzeus\_file/Nginx\_files** for web server configuration related changes.

Place the provided ssl-nginx.conf folder in **/etc/ssl/ folder**.

Go to the /etc/nginx folder.

Rename the existing nginx.conf file to nginx.conf\_bkp and add the nginx.conf present in **Avanzeus\_file/Nginx\_Files/** folder to **/etc/nginx/ folder**.

Few changes have to be made to the nginx.conf file.

Changes to be made are as follows:

a. domain\_name: This has to be changed in the conf file as shown in the image below:

```

server {
    listen      80;
    server_name avanseus.telcocloud.com;
    location / {
        proxy_pass http://allbackend;
        proxy_http_version 1.1;
    }
}

```

- b. istio\_http\_port\_number (mapping of port no 80 has to be added in the nginx.conf file).
- c. Execute the below command to get the istio\_http\_port\_number:

```
$kubectl get svc istio-ingressgateway -n istio-system
```

```

capv@avensues02-master-control-plane-grwth [ ~/Avanseus_files/Nginx_Files ]$ kubectl get svc istio-ingressgateway -n istio-system
NAME           TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)          AGE
istio-ingressgateway   LoadBalancer   100.71.158.94  192.168.101.104  15021:30397/TCP,80:31757/TCP,443:31061/TCP,15012:32438/TCP,15443:31088/TCP   32d
capv@avensues02-master-control-plane-grwth [ ~/Avanseus_files/Nginx_Files ]$ 

```

- d. path\_to\_the\_certificate\_file: path of certificate file has to be added in the nginx.conf file.
- e. path\_to\_the\_key\_file: path of key file has to be added in the nginx.conf file as seen in the below image:

```

listen 443 ssl http2; # managed by Certbot
#   ssl_protocols TLSV1.3;
ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;
ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;
include /etc/ssl/ssl-nginx.conf; # managed by Certbot
ssl_dhparam /etc/ssl/certs/dhparam.pem; # managed by Certbot

```

After making the respective changes, restart the nginx server with the below command:

```
$sudo systemctl restart nginx
```

### 3. Istio VirtualService and Gateway

Go to Avanseus\_files/Helm\_Charts/ folder and execute the below command:

```
$kubectl apply -f gateway.yaml -n istio-system.
```

Now, the network function should be fully ready for interoperating with other network functions in the telco cloud.

## 5. Validation Steps

Steps to validate the successful deployment of the network functions. E.g., commands listing the desired state of PODs along with the screenshots.

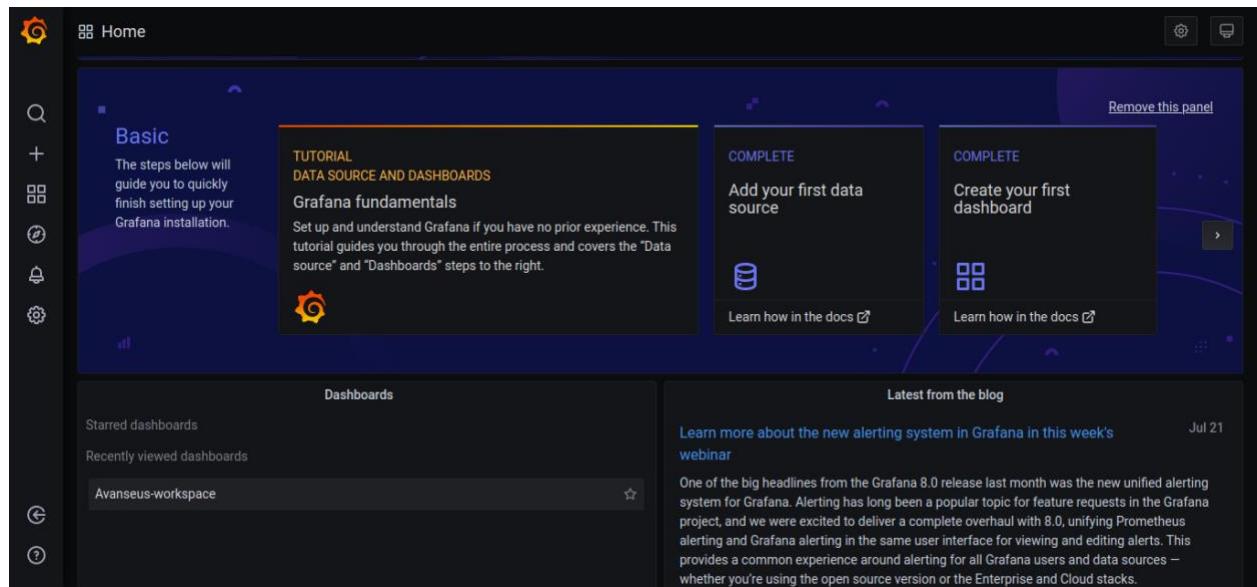
```
$kubectl get -f pods -n avanseus-workspace
```

```


capv@avensues02-master-control-plane-grwth [ ~ ]$ kubectl get pods -n avanseus-workspace
NAME           READY   STATUS    RESTARTS   AGE
can-79b46467f9-m5bws   2/2     Running   0          7d3h
controller-6989886c-lwdvz  2/2     Running   0          13d
ldap-69845bb64f-66fm5   2/2     Running   0          32d
mongo-0           2/2     Running   0          32d
vbi-ccdf5b64c-6mn8r   2/2     Running   0          13d
worker-59b9577c5c-zrkzc  2/2     Running   0          13d

```

## 6. Accessing the Application and Monitoring Tools from the Browser


CAN Application: [http://<domain\\_name>/CAN/](http://<domain_name>/CAN/)

Ex: <domain\_name> = 192.168.29.100 or can.avanseus.com

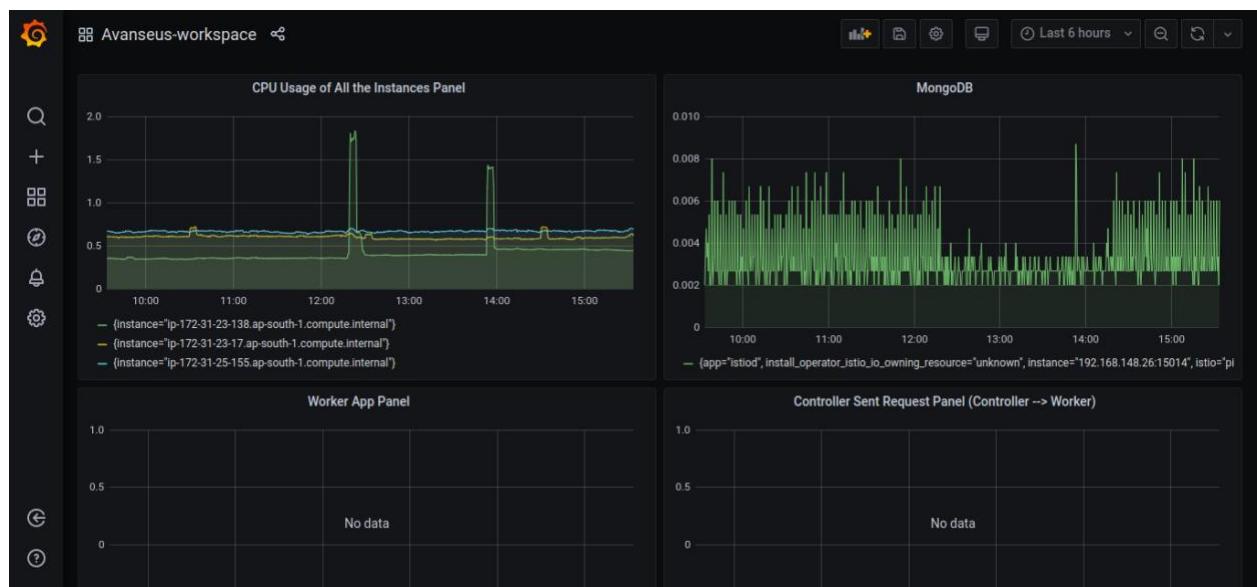


Grafana Dashboard: [https://<domain\\_name>/grafana](https://<domain_name>/grafana)

Ex: <domain\_name> = 192.168.29.100 or can.avanseus.com

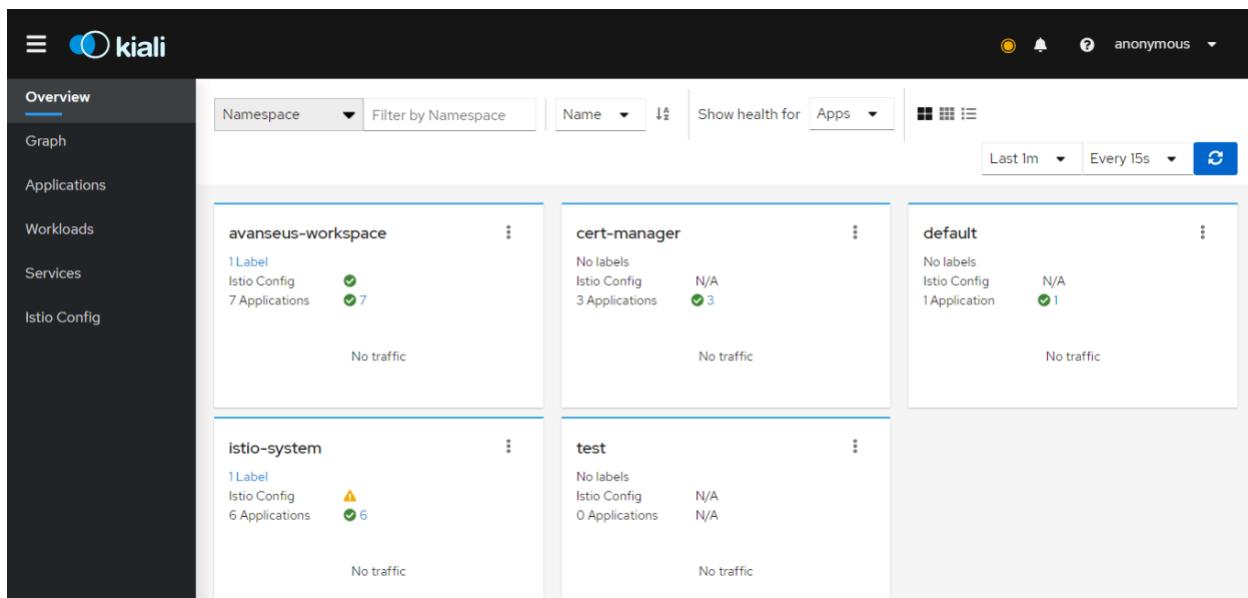
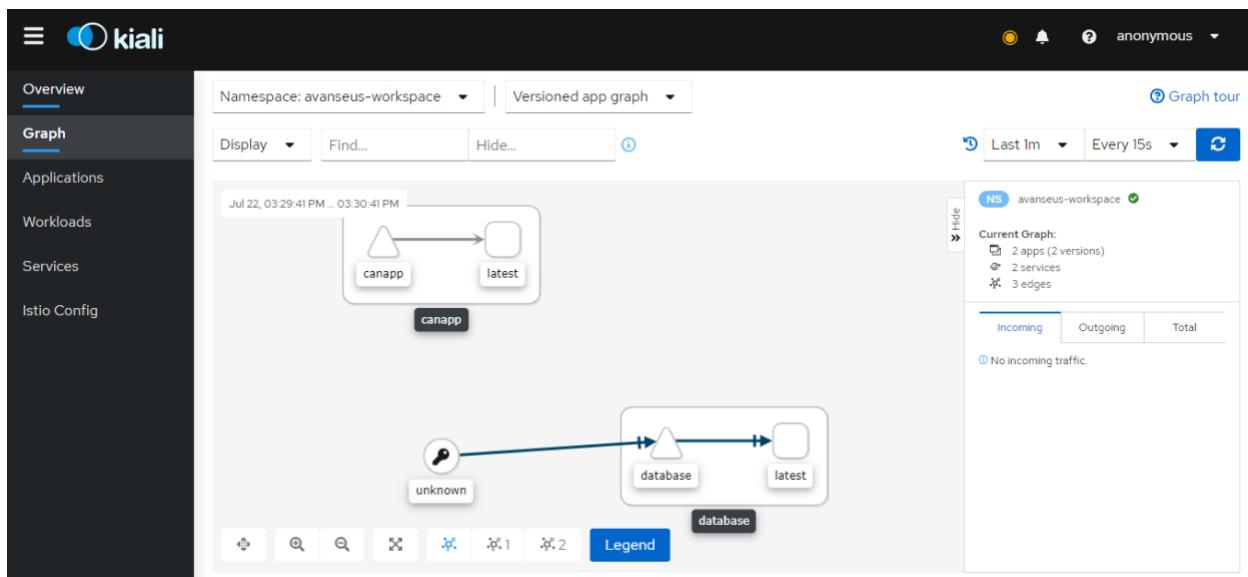


**Basic**  
The steps below will guide you to quickly finish setting up your Grafana installation.


**TUTORIAL**  
**DATA SOURCE AND DASHBOARDS**  
**Grafana fundamentals**  
Set up and understand Grafana if you have no prior experience. This tutorial guides you through the entire process and covers the "Data source" and "Dashboards" steps to the right.

**COMPLETE**  
Add your first data source

**COMPLETE**  
Create your first dashboard



**Dashboards**  
Starred dashboards  
Recently viewed dashboards  
Avanseus-workspace

**Latest from the blog**  
Learn more about the new alerting system in Grafana in this week's webinar  
Jul 21  
One of the big headlines from the Grafana 8.0 release last month was the new unified alerting system for Grafana. Alerting has long been a popular topic for feature requests in the Grafana project, and we were excited to deliver a complete overhaul with 8.0, unifying Prometheus alerting and Grafana alerting in the same user interface for viewing and editing alerts. This provides a common experience around alerting for all Grafana users and data sources – whether you're using the open source version or the Enterprise or Cloud stacks.



Kiali Dashboard: [https://<domain\\_name>/kiali](https://<domain_name>/kiali)

Ex: <domain\_name> = 192.168.29.100 or can.avanseus.com

