
Prerequisites

Third party software prerequisites

Table shown below, specifies the supported versions of the third party software or protocol.

Third party software availability

1. MongoDB schema with initial data

For the CAN application to come up successfully, it needs some initial data in MongoDB.
However if it is not available, then Avanseus delivery needs to be contacted for an initial
data dump that needs to be imported to a MongoDB schema. MongoDB can either be
within the Openshift platform or outside. This MongoDB schema must be accessible
from the CAN operator pods preferably on port 27017.

2. LDAP with initial user data

For the CAN application, authentication is made possible using LDAP. Usually
customers provide an LDAP connection for integration. However, if LDAP is not made
available by the customer, then Avanseus delivery team needs to be requested to get a
lightweight LDAP software. One initial user comes with this LDAP. LDAP can either be
within the Openshift platform or outside. This LDAP must be accessible from the CAN
operator pods preferably on port 1389.
Note: LDAP Docker image will be provided only when the customer doesn't have their
LDAP for integration.

Configuration prerequisites

1. PersistenceVolumeClaim to copy WAR files

By default, the CAN operator does not come with CAN binary. Before deploying, the
binaries in WAR format need to be obtained separately and put into a PersistentVolume.
Mentioned below is a method to do this.

Compatible software/protocol Supported version

MongoDB v3.4.6

LDAP protocol Version-3

Create a PersistenceVolumeClaim “tmp-data”. Below is an example configuration YAML

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: tmp-data
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G

Create a dummy application (Apache server) and mount the created
PersistenceVolumeClaim. Below is the YAML content

apiVersion: v1
kind: Pod
metadata:
 name: pod-httpd
 labels:
 app: apache_webserver
spec:
 containers:
 - name: cntr-httpd
 image: httpd:latest
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /mnt
 name: tmp-data
 volumes:
 - name: tmp-data
 persistentVolumeClaim:
 claimName: tmp-data

Change directory to the place where WAR files are available. Copy the WAR files
provided by Avanseus into the mount point "/mnt" using the rsync command.

oc rsync . pod-httpd:/mnt

Once this is done, the dummy application pod can be stopped. Remember that "tmp-data"
PersistentVolume must not be deleted as this is used by Operator components to pull the
binaries.

2. PersistenceVolumeClaim for CAN application

Create a PersistenceVolumeClaim named “data”. This is needed for the CAN application
to write files. YAML configuration is given below.

kind: PersistentVolumeClaim
apiVersion: v1

metadata:
 name: data
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5G

3. Create Route configuration to access application over web

Mentioned below is the YAML content of file “canroute.yaml” to create a Route for CAN
web application.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 openshift.io/host.generated: "true"
 labels:
 app: can-pod
 name: can
spec:
 host: can.<ROUTER_DEFAULT_HOSTNAME>
 path: /CAN/
 port:
 targetPort: can-port
 tls:
 insecureEdgeTerminationPolicy: None
 termination: edge
 to:
 kind: Service
 name: can-pod
 weight: 100
 wildcardPolicy: None

Mentioned below is the YAML content of file “casroute.yaml” to create a Route for CAS
web application.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 openshift.io/host.generated: "true"
 labels:
 app: can-pod
 name: cas
spec:
 host: can.<ROUTER_DEFAULT_HOSTNAME>
 path: /CAS/
 port:
 targetPort: cas-port
 tls:
 insecureEdgeTerminationPolicy: None

 termination: edge
 to:
 kind: Service
 name: can-pod
 weight: 100
 wildcardPolicy: None

In both the above mentioned YAML files, replace the
<ROUTER_DEFAULT_HOSTNAME> with the default router host of the Openshift
installation. If “​apps.avanseus1.avanseuscandev.com​” was the router default
hostname, then the configuration line in the YAML file would be as shown below:

 ​host: can.​apps.avanseus1.avanseuscandev.com

4. Create ConfigMaps with necessary information

Pods within the operator need configurations to startup the application. These configurations
have to be stored in Config maps on Openshift platform. CAN operator comes with 5
applications which would run in 5 different pods:

● CAN (Needs config map)
● CAN worker - 1 (Needs config map)
● CAN worker - 2 (Needs config map)
● CAN worker - 3 (Needs config map)
● VBI

Below are the ConfigMap files that needs to be imported:

can-master-config.yaml​ - Master config file:

apiVersion: v1
data:
 catalina.properties: "# Licensed to the Apache Software Foundation (ASF) under one
 or more\r\n# contributor license agreements. See the NOTICE file distributed
 with\r\n# this work for additional information regarding copyright ownership.\r\n#
 The ASF licenses this file to You under the Apache License, Version 2.0\r\n# (the
 \"License\"); you may not use this file except in compliance with\r\n# the License.
 \ You may obtain a copy of the License at\r\n#\r\n# http://www.apache.org/licenses/LICENSE-2.0\r\n#\r\n#
 Unless required by applicable law or agreed to in writing, software\r\n# distributed
 under the License is distributed on an \"AS IS\" BASIS,\r\n# WITHOUT WARRANTIES
 OR CONDITIONS OF ANY KIND, either express or implied.\r\n# See the License for
 the specific language governing permissions and\r\n# limitations under the License.\r\n\r\n#\r\n#
 List of comma-separated packages that start with or equal this string\r\n# will
 cause a security exception to be thrown when\r\n# passed to checkPackageAccess
 unless the\r\n# corresponding RuntimePermission (\"accessClassInPackage.\"+package)
 has\r\n# been
granted.\r\npackage.access=sun.,org.apache.catalina.,org.apache.coyote.,org.apache.jasper.,org.apache.tomcat.\r
\n#\r\n#
 List of comma-separated packages that start with or equal this string\r\n# will
 cause a security exception to be thrown when\r\n# passed to checkPackageDefinition
 unless the\r\n# corresponding RuntimePermission (\"defineClassInPackage.\"+package)

 has\r\n# been granted.\r\n#\r\n# by default, no packages are restricted for definition,
 and none of\r\n# the class loaders supplied with the JDK call
checkPackageDefinition.\r\n#\r\npackage.definition=sun.,java.,org.apache.catalina.,org.apache.coyote.,\\\r\norg.ap
ache.jasper.,org.apache.naming.,org.apache.tomcat.\r\n\r\n#\r\n#\r\n#
 List of comma-separated paths defining the contents of the \"common\"\r\n# classloader.
 Prefixes should be used to define what is the repository type.\r\n# Path may be
 relative to the CATALINA_HOME or CATALINA_BASE path or absolute.\r\n# If left
 as blank,the JVM system loader will be used as Catalina's \"common\"\r\n# loader.\r\n#
 Examples:\r\n# \"foo\": Add this folder as a class repository\r\n# \"foo/*.jar\":
 Add all the JARs of the specified folder as class\r\n# repositories\r\n#
 \ \"foo/bar.jar\": Add bar.jar as a class repository\r\n#\r\n# Note: Values
 are enclosed in double quotes (\"...\") in case either the\r\n# ${catalina.base}
 path or the ${catalina.home} path contains a comma.\r\n# Because double
 quotes are used for quoting, the double quote character\r\n# may not appear
 in a
path.\r\ncommon.loader=\"${catalina.base}/lib\",\"${catalina.base}/lib/*.jar\",\"${catalina.home}/lib\",\"${catalina.hom
e}/lib/*.jar\"\r\n\r\n#\r\n#
 List of comma-separated paths defining the contents of the \"server\"\r\n# classloader.
 Prefixes should be used to define what is the repository type.\r\n# Path may be
 relative to the CATALINA_HOME or CATALINA_BASE path or absolute.\r\n# If left
 as blank, the \"common\" loader will be used as Catalina's \"server\"\r\n# loader.\r\n#
 Examples:\r\n# \"foo\": Add this folder as a class repository\r\n# \"foo/*.jar\":
 Add all the JARs of the specified folder as class\r\n# repositories\r\n#
 \ \"foo/bar.jar\": Add bar.jar as a class repository\r\n#\r\n# Note: Values
 may be enclosed in double quotes (\"...\") in case either the\r\n# ${catalina.base}
 path or the ${catalina.home} path contains a comma.\r\n# Because double
 quotes are used for quoting, the double quote character\r\n# may not appear
 in a path.\r\nserver.loader=\r\n\r\n#\r\n# List of comma-separated paths defining
 the contents of the \"shared\"\r\n# classloader. Prefixes should be used to define
 what is the repository type.\r\n# Path may be relative to the CATALINA_BASE path
 or absolute. If left as blank,\r\n# the \"common\" loader will be used as Catalina's
 \"shared\" loader.\r\n# Examples:\r\n# \"foo\": Add this folder as a class
 repository\r\n# \"foo/*.jar\": Add all the JARs of the specified folder as
 class\r\n# repositories\r\n# \"foo/bar.jar\": Add bar.jar
 as a class repository\r\n# Please note that for single jars, e.g. bar.jar, you
 need the URL form\r\n# starting with file:.\r\n#\r\n# Note: Values may be enclosed
 in double quotes (\"...\") in case either the\r\n# ${catalina.base} path
 or the ${catalina.home} path contains a comma.\r\n# Because double quotes
 are used for quoting, the double quote character\r\n# may not appear in
 a path.\r\nshared.loader=\r\n\r\n# Default list of JAR files that should not be
 scanned using the JarScanner\r\n# functionality. This is typically used to scan
 JARs for configuration\r\n# information. JARs that do not contain such information
 may be excluded from\r\n# the scan to speed up the scanning process. This is the
 default list. JARs on\r\n# this list are excluded from all scans. The list must
 be a comma separated list\r\n# of JAR file names.\r\n# The list of JARs to skip
 may be over-ridden at a Context level for individual\r\n# scan types by configuring
 a JarScanner with a nested JarScanFilter.\r\n# The JARs listed below include:\r\n#
 - Tomcat Bootstrap JARs\r\n# - Tomcat API JARs\r\n# - Catalina JARs\r\n# - Jasper
 JARs\r\n# - Tomcat JARs\r\n# - Common non-Tomcat JARs\r\n# - Test JARs (JUnit,
 Cobertura and
dependencies)\r\ntomcat.util.scan.StandardJarScanFilter.jarsToSkip=\\\r\nbootstrap.jar,commons-daemon.jar,tomc
at-juli.jar,\\\r\nannotations-api.jar,el-api.jar,jsp-api.jar,servlet-api.jar,websocket-api.jar,\\\r\njaspic-api.jar,\\\r\ncatalin
a.jar,catalina-ant.jar,catalina-ha.jar,catalina-storeconfig.jar,\\\r\ncatalina-tribes.jar,\\\r\njasper.jar,jasper-el.jar,ecj-*.ja
r,\\\r\ntomcat-api.jar,tomcat-util.jar,tomcat-util-scan.jar,tomcat-coyote.jar,\\\r\ntomcat-dbcp.jar,tomcat-jni.jar,tomcat-
websocket.jar,\\\r\ntomcat-i18n-en.jar,tomcat-i18n-es.jar,tomcat-i18n-fr.jar,tomcat-i18n-ja.jar,\\\r\ntomcat-juli-adapte
rs.jar,catalina-jmx-remote.jar,catalina-ws.jar,\\\r\ntomcat-jdbc.jar,\\\r\ntools.jar,\\\r\ncommons-beanutils*.jar,common
s-codec*.jar,commons-collections*.jar,\\\r\ncommons-dbcp*.jar,commons-digester*.jar,commons-fileupload*.jar,\\\r\

ncommons-httpclient*.jar,commons-io*.jar,commons-lang*.jar,commons-logging*.jar,\\\r\ncommons-math*.jar,com
mons-pool*.jar,\\\r\njstl.jar,taglibs-standard-spec-*.jar,\\\r\ngeronimo-spec-jaxrpc*.jar,wsdl4j*.jar,\\\r\nant.jar,ant-junit
.jar,aspectj.jar,jmx.jar,h2*.jar,hibernate*.jar,httpclient*.jar,\\\r\njmx-tools.jar,jta*.jar,log4j*.jar,mail*.jar,slf4j*.jar,\\\r\n
xercesImpl.jar,xmlParserAPIs.jar,xml-apis.jar,\\\r\njunit.jar,junit-*.jar,hamcrest-*.jar,easymock-*.jar,cglib-*.jar,\\\r\nob
jenesis-*.jar,ant-launcher.jar,\\\r\ncobertura-*.jar,asm-*.jar,dom4j-*.jar,icu4j-*.jar,jaxen-*.jar,jdom-*.jar,\\\r\njetty-*.jar,
oro-*.jar,servlet-api-*.jar,tagsoup-*.jar,xmlParserAPIs-*.jar,\\\r\nxom-*.jar\r\n\r\n#
 Default list of JAR files that should be scanned that overrides the default\r\n#
 jarsToSkip list above. This is typically used to include a specific JAR that\r\n#
 has been excluded by a broad file name pattern in the jarsToSkip list.\r\n# The
 list of JARs to scan may be over-ridden at a Context level for individual\r\n#
 scan types by configuring a JarScanner with a nested
JarScanFilter.\r\ntomcat.util.scan.StandardJarScanFilter.jarsToScan=\\\r\nlog4j-web*.jar,log4j-taglib*.jar,log4javasc
ript*.jar,slf4j-taglib*.jar\r\n\r\n#
 String cache
configuration.\r\ntomcat.util.buf.StringCache.byte.enabled=true\r\n#tomcat.util.buf.StringCache.char.enabled=true\r
\n#tomcat.util.buf.StringCache.trainThreshold=500000\r\n#tomcat.util.buf.StringCache.cacheSize=5000\r\n\r\n#Ke
y\r\nPASSWORD_KEY=<AVANSEUS_PASSWORD_KEY>\r\n"
 config.properties: |
 #Domain details
 avanseus.app.cas.domain=<APP_DOMAIN>
 avanseus.app.can.domain=<APP_DOMAIN>

 avanseus.vbi.ip=<VBI_IP>
 avanseus.vbi.port=30004

 #Domain protocol
 avanseus.protocol=https

 #Host details
 avanseus.app.cas.host=127.0.0.1:2003
 avanseus.app.can.host=127.0.0.1:2000

 #MongoDb configuration
 avanseus.mongodb.ip=<MONGODB_IP>
 avanseus.mongodb.port=<MONGODB_PORT>
 avanseus.mongodb.username=<MONGODB_USERNAME>
 avanseus.mongodb.password=<MONGODB_PASSWORD>
 avanseus.mongodb.dbName=<MONGODB_SCHEMA_NAME>

 avanseus.mongodb.admin.username=admin
 avanseus.mongodb.admin.password=<MONGODB_ADMIN_PASSWORD>
 avanseus.mongodb.admin.dbName=admin

 #log configuration
 avanseus.log.path=/data/workspace/logs/
 avanseus.log.thread.poolsize=20

 #LDAP server configuration
 avanseus.ldap.organisation=<LDAP_ORG>
 avanseus.ldap.domain=<LDAP_DOMAIN>
 avanseus.ldap.url1=ldap://<LDAP_URL1>:<LDAP_PORT1>
 avanseus.ldap.url2=ldap://<LDAP_URL2>:<LDAP_PORT2>
 avanseus.ldap.userDn=cn=Directory Manager
 avanseus.ldap.password=<LDAP_PASSWORD>

 #NAS path
 avanseus.app.nas.path=/data/workspace/nasmount/

 #Email Config
 avanseus.email.fromId=<EMAIL_FROM_ID>
 avanseus.email.pwd=<EMAIL_PASSWORD>
 avanseus.email.host=<EMAIL_SERVER>
 avanseus.email.fromName=<EMAIL_SENDER_NAME>
 avanseus.email.port=<EMAIL_PORT>

 #Cluster node configuration
 avanseus.predictionNode.name=nodeA
 setenv.sh: |
 export JAVA_OPTS="$JAVA_OPTS -Dapplication.nasmount=/data/workspace/nasmount/
-Dmongo.host=<MONGODB_IP> -Dmongo.port=<MONGODB_PORT> -Djava.security.manager
-Djava.security.policy=${CATALINA_BASE}/conf/security.policy"
 export TOMCAT_OPTS="$TOMCAT_OPTS -Djava.security.debug=access,failure"
kind: ConfigMap
metadata:
 creationTimestamp: null
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:data:
 .: {}
 f:catalina.properties: {}
 f:config.properties: {}
 f:setenv.sh: {}
 manager: oc
 operation: Update
 time: "2020-09-23T07:08:13Z"
 name: can-master-config
 selfLink: /api/v1/namespaces/default/configmaps/can-master-config

can-slave-config-node-b.yaml​ - NODE-B config file:

apiVersion: v1
data:
 config.properties: |
 #Domain details
 avanseus.app.cas.domain=<APP_DOMAIN>
 avanseus.app.can.domain=<APP_DOMAIN>

 avanseus.vbi.ip=<VBI_IP>
 avanseus.vbi.port=30004

 #Domain protocol
 avanseus.protocol=https

 #Host details
 avanseus.app.cas.host=127.0.0.1:2003
 avanseus.app.can.host=127.0.0.1:2000

 #MongoDb configuration
 avanseus.mongodb.ip=<MONGODB_IP>
 avanseus.mongodb.port=<MONGODB_PORT>
 avanseus.mongodb.username=<MONGODB_USERNAME>

 avanseus.mongodb.password=<MONGODB_PASSWORD>
 avanseus.mongodb.dbName=<MONGODB_SCHEMA_NAME>

 avanseus.mongodb.admin.username=admin
 avanseus.mongodb.admin.password=<MONGODB_ADMIN_PASSWORD>
 avanseus.mongodb.admin.dbName=admin

 #log configuration
 avanseus.log.path=/data/workspace/logs/
 avanseus.log.thread.poolsize=20

 #LDAP server configuration
 avanseus.ldap.organisation=<LDAP_ORG>
 avanseus.ldap.domain=<LDAP_DOMAIN>
 avanseus.ldap.url1=ldap://<LDAP_URL1>:<LDAP_PORT1>
 avanseus.ldap.url2=ldap://<LDAP_URL2>:<LDAP_PORT2>
 avanseus.ldap.userDn=cn=Directory Manager
 avanseus.ldap.password=<LDAP_PASSWORD>

 #NAS path
 avanseus.app.nas.path=/data/workspace/nasmount/

 #Email Config
 avanseus.email.fromId=<EMAIL_FROM_ID>
 avanseus.email.pwd=<EMAIL_PASSWORD>
 avanseus.email.host=<EMAIL_SERVER>
 avanseus.email.fromName=<EMAIL_SENDER_NAME>
 avanseus.email.port=<EMAIL_PORT>

 #Cluster node configuration
 avanseus.predictionNode.name=nodeB
kind: ConfigMap
metadata:
 creationTimestamp: null
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:data:
 .: {}
 f:config.properties: {}
 manager: oc
 operation: Update
 time: "2020-10-11T10:32:15Z"
 name: can-slave-config-node-b
 selfLink: /api/v1/namespaces/default/configmaps/can-slave-config-node-b

can-slave-config-node-c.yaml​ - Node-C config file

apiVersion: v1
data:
 config.properties: |
 #Domain details
 avanseus.app.cas.domain=<APP_DOMAIN>
 avanseus.app.can.domain=<APP_DOMAIN>

 avanseus.vbi.ip=<VBI_IP>
 avanseus.vbi.port=30004

 #Domain protocol
 avanseus.protocol=https

 #Host details
 avanseus.app.cas.host=127.0.0.1:2003
 avanseus.app.can.host=127.0.0.1:2000

 #MongoDb configuration
 avanseus.mongodb.ip=<MONGODB_IP>
 avanseus.mongodb.port=<MONGODB_PORT>
 avanseus.mongodb.username=<MONGODB_USERNAME>
 avanseus.mongodb.password=<MONGODB_PASSWORD>
 avanseus.mongodb.dbName=<MONGODB_SCHEMA_NAME>

 avanseus.mongodb.admin.username=admin
 avanseus.mongodb.admin.password=<MONGODB_ADMIN_PASSWORD>
 avanseus.mongodb.admin.dbName=admin

 #log configuration
 avanseus.log.path=/data/workspace/logs/
 avanseus.log.thread.poolsize=20

 #LDAP server configuration
 avanseus.ldap.organisation=<LDAP_ORG>
 avanseus.ldap.domain=<LDAP_DOMAIN>
 avanseus.ldap.url1=ldap://<LDAP_URL1>:<LDAP_PORT1>
 avanseus.ldap.url2=ldap://<LDAP_URL2>:<LDAP_PORT2>
 avanseus.ldap.userDn=cn=Directory Manager
 avanseus.ldap.password=<LDAP_PASSWORD>

 #NAS path
 avanseus.app.nas.path=/data/workspace/nasmount/

 #Email Config
 avanseus.email.fromId=<EMAIL_FROM_ID>
 avanseus.email.pwd=<EMAIL_PASSWORD>
 avanseus.email.host=<EMAIL_SERVER>
 avanseus.email.fromName=<EMAIL_SENDER_NAME>
 avanseus.email.port=<EMAIL_PORT>

 #Cluster node configuration
 avanseus.predictionNode.name=nodeC
kind: ConfigMap
metadata:
 creationTimestamp: null
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:data:
 .: {}
 f:config.properties: {}
 manager: oc
 operation: Update

 time: "2020-10-11T10:32:15Z"
 name: can-slave-config-node-c
 selfLink: /api/v1/namespaces/default/configmaps/can-slave-config-node-c

can-slave-config-node-d.yaml​ - Node-D config file

apiVersion: v1
data:
 config.properties: |
 #Domain details
 avanseus.app.cas.domain=<APP_DOMAIN>
 avanseus.app.can.domain=<APP_DOMAIN>

 avanseus.vbi.ip=<VBI_IP>
 avanseus.vbi.port=30004

 #Domain protocol
 avanseus.protocol=https

 #Host details
 avanseus.app.cas.host=127.0.0.1:2003
 avanseus.app.can.host=127.0.0.1:2000

 #MongoDb configuration
 avanseus.mongodb.ip=<MONGODB_IP>
 avanseus.mongodb.port=<MONGODB_PORT>
 avanseus.mongodb.username=<MONGODB_USERNAME>
 avanseus.mongodb.password=<MONGODB_PASSWORD>
 avanseus.mongodb.dbName=<MONGODB_SCHEMA_NAME>

 avanseus.mongodb.admin.username=admin
 avanseus.mongodb.admin.password=<MONGODB_ADMIN_PASSWORD>
 avanseus.mongodb.admin.dbName=admin

 #log configuration
 avanseus.log.path=/data/workspace/logs/
 avanseus.log.thread.poolsize=20

 #LDAP server configuration
 avanseus.ldap.organisation=<LDAP_ORG>
 avanseus.ldap.domain=<LDAP_DOMAIN>
 avanseus.ldap.url1=ldap://<LDAP_URL1>:<LDAP_PORT1>
 avanseus.ldap.url2=ldap://<LDAP_URL2>:<LDAP_PORT2>
 avanseus.ldap.userDn=cn=Directory Manager
 avanseus.ldap.password=<LDAP_PASSWORD>

 #NAS path
 avanseus.app.nas.path=/data/workspace/nasmount/

 #Email Config
 avanseus.email.fromId=<EMAIL_FROM_ID>
 avanseus.email.pwd=<EMAIL_PASSWORD>
 avanseus.email.host=<EMAIL_SERVER>
 avanseus.email.fromName=<EMAIL_SENDER_NAME>
 avanseus.email.port=<EMAIL_PORT>

 #Cluster node configuration
 avanseus.predictionNode.name=nodeD
kind: ConfigMap
metadata:
 creationTimestamp: null
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 fieldsV1:
 f:data:
 .: {}
 f:config.properties: {}
 manager: oc
 operation: Update
 time: "2020-10-11T10:32:15Z"
 name: can-slave-config-node-d
 selfLink: /api/v1/namespaces/default/configmaps/can-slave-config-node-d

In the above mentioned ​YAML​ files replace the text enclosed in ​<>​ with necessary information.
Below are their details:

● <AVANSEUS_PASSWORD_KEY>​ : Replace this with the password key to be used. Request the
Avanseus delivery team for this. This is very specific for a given DB dump.

● <APP_DOMAIN>​ : Replace this with the application domain name. This must be updated
with the host name configured in the Route configuration.

● <VBI_IP>​ : Replace this with the VBI process IP. This must be updated with the Openshift
cluster's Master node IP.

● <MONGODB_IP>​ : Replace this with MongoDB IP which is reachable from the pods.
● <MONGODB_PORT>​ : Replace this with MongoDB Port which is reachable from the pods.
● <MONGODB_USERNAME>​ : Replace this with MongoDB schema read/write username.
● <MONGODB_PASSWORD>​ : Replace this with above username's password (Encrypted). The

encryption technique is defined in the Password encryption document. Please refer to
that.

● <MONGODB_SCHEMA_NAME>​ : Replace this with DB schema name.
● <MONGODB_ADMIN_PASSWORD>​ : Replace this with MongoDB admin password (Encrypted).

The encryption technique is defined in the Password encryption document. Please refer
to that.

● <LDAP_URL1>​ : Replace this with LDAP URL 1. LDAP IP reachable from pods.
● <LDAP_URL2>​ : Replace this with LDAP URL 2. Same as above if the customer does not

provide failover LDAP URL.
● <LDAP_PORT1>​ : Replace this with LDAP Port 1. LDAP port reachable from pods.
● <LDAP_PORT2>​ : Replace this with LDAP Port 2. Same as above if the customer does not

provide failover LDAP instance.
● <LDAP_PASSWORD>​ : Replace this with LDAP password (Encrypted). The encryption

technique is defined here in the Password encryption document. Please refer to that.
● <LDAP_ORG>​ : Replace this with LDAP organisation. Customers usually provide this or

contact Avanseus support team for this.

● <LDAP_DOMAIN>​ : Replace this with LDAP domain. Customers usually provide this or
contact Avanseus support team for this.

● <EMAIL_FROM_ID>​ : Replace this with Email ID of sender.
● <EMAIL_SENDER_NAME>​ : Replace this with Email sender's name.
● <EMAIL_SERVER>​ : Replace this with Email server host or domain.
● <EMAIL_PORT>​ : Replace this with Email server port.
● <EMAIL_PASSWORD>​ : Replace this with Email sender's password.

The last 5 entries must be filled up with relevant SMTP server or relay server information
which is reachable from the Openshift cluster.

Installation

CAN Operator is available in the OperatorHub. Below is a link to the video which shows how to
install the CAN operator.

https://avanseuscandev.com/releases/CAN/5.0/Videos/can-operator-openshift-installation-guide
.mp4

Post installation

After installation, CAN application would be available on following URL:

https://can.<ROUTER_DEFAULT_HOSTNAME>/CAN/

If CAN tool was integrated with LDAP on customer premise, then the user credentials would be
known.
If CAN tool was integrated with Avanseus's light weight LDAP, then request the Avanseus
delivery team for credentials.

https://avanseuscandev.com/releases/CAN/5.0/Videos/can-operator-openshift-installation-guide.mp4
https://avanseuscandev.com/releases/CAN/5.0/Videos/can-operator-openshift-installation-guide.mp4

