2,

CAN 5.0

Security Specification and Implementation

-«

MAY 8, 2020
AVANSEUS TECHNOLOGIES PVT. LTD.

Table of Contents

REVISION NISTOMYciiiiiiiiiie e e e e e 1
I O o] 1= o3 11V 3P PPUPPUPPPPPRRRRR 2
2. URL SPECITICALIONueeiiiiieiiiie e e ettt e s e e e e e e e e e e s eeeeaeeeeeannnes 2
3. Data ValIdAtiONo.ueeiiieeiiiiie e e e 3
4. SeSSION MANAGEIMENTuuiiiiiiiiieeee e e e e e e e e e e e e e e s s e e e e e aeeesesaannrbrrerereaaeens 3
5. CroSS SIt€ SCHPLING.....uuuuiiiieiiieeeeeieiiiiiitie e e e e e e e e s e s ssrrrer e e e eeeeeeessssssnranrrereeaeeeeeaaanns 4
6. SQL INJECHONeeii it e e e e e e e e e e e e an 5
7. INfOrmation 1€AKAQJEueeiiiiii e 5
8. DefaUlt PAGES ... e e e e e a e 6
9. HTTP MEINOUS ... e 6
10. HUMAN CONFIMMALIONoiiiiiiiiiiiice e 6
11. Cross site request forgery (CSRF Or XSRF) ...covvvvieiiiiiiiiieeieeeee e 7
12. HTTP Strict transport SECUrity (HSTS).....cuuuivieiiiiiiie e 7
13. Cookie CONfIQUIAtiON........coiiiiiiiie i 8
I S I o] o) (o Yoo R I = 10 1< o o i (SRR 9
15, CUPREI SUITE e e e 9
G T o F= T 1 o P PPPOPUPPRPPRRRRR 9
17. Key exchange protoCol.............eeeiiiieiiiiiiiiiieeie e e 10
18. SSL/TLS channel configuration.............oocueeeeeiniieiieeesiieee e 10
19. Hiding server detailS ... 11
20. ANti-CHCKJACKING ...ttt e e e e e e e e e e s reeaeaaee s 11

Revision history

avanseus

Date Created / Modified Reviewed by Comments
by
08-05- Naveen Mahale ChiranjibBhandary Draft
2020

avanseu&
1. Objectives

This document focuses on specifying web application security requirements and its
configuration to implement these requirements. These configurations allow the application
to behave as expected, even when there is an attack on the application. The idea is to
provide a set of security controls engineered into the web application to protect its assets
from potentially malicious agents. The document covers handling of OWASP top 10
vulnerabilities as well as handling other major vulnerabilities.

The topics covered in this document are as follows:
1. URL specification
Data validation
Session management
Cross site scripting
SQL injection
Information leakage
Default pages
HTTP methods
Human confirmation
. Cross site request forgery
. HTTP strict transport security
. Cookie configuration
. SSL protocol — Transport
. Cipher suite
. Hashing
. Key exchange protocol
. SSL/TLS channel configuration
. Hiding server details
. Anti-clickjacking
. Limit request body size
. Content security policy

©CxeNOoOO~WDN

NNRPRPRRPRRRRRERRRR
P O OWoo~NOOOM~WDNEO

Each section is divided into 2 sub-divisions:
a. Requirements: List of sub-requirements are mentioned here.
b. Implementation: Methodology or technique used to configure the system to prevent
that vulnerability.

2. URL specification

Requirements:
¢ URLs shall not contain sensitive information. Sensitive information includes

passwords, IP addresses etc.
e URLs shall not show data in clear text.

3.

4.

avanseus

e Transfer of sensitive data shall always be performed via HTTP POST and not via

HTTP GET.
e Systems should ensure that no sensitive information is transferred during a
redirection.
Implementation:

e Al HTTP requests would be performed via HTTP POST apart from landing screens
which do not need query string parameters to load the screen.

Data validation

Requirements:

e User input must be rejected where one or more of the following are true.

o Data is not formatted as expected.

e Incorrect syntax.

¢ Contains parameters or characters with invalid values.

¢ Contains a numeric value that would cause calculation in the application to divide a
number by zero.

¢ Contains parameters when the source cannot be validated by the user’s session.

Implementation:
o Every data submitted in the Ul, goes through a client side validation keeping in view
that all the above mentioned issues are checked.
¢ However, when client side validation is bypassed, a standard server side validation

framework is put in place to validate all the above mentioned issues on the user
submitted data.

Session management

Requirements:
The web application shall have a strong and consistent framework for session ID.
management. Creation and deletion must be protected throughout their life cycle based on
following measures:
e The session ID shall not be included in the URL.
e The session ID shall be built with high complexity so that it cannot be easily
guessed.
e Session ID based on source IP or personal information shall not be used.
¢ Numerically incremental session IDs shall not be used.
e Active sessions shall be controlled to avoid multiple instances of the application with
the same session ID.

avanseus

e Session IDs shall expire after predefined inactivity time and when the user logs out.
e Session IDs shall not be reused.
e Users shall not be allowed to choose or change session IDs.

Implementation:
e Session ID generation is done by Apache tomcat web server using Pseudo random
technique in Java.
e Session ID will not be included in the URL when following is configured:

Go to tomcat folder, where tomcat is installed
Open conf folder under tomcat (tomcat>>conf)
Open web.xml inside the conf folder (tomcat>>conf>>web.xml)
Under the session-config section add the below lines
<session-config>

<tracking-mode>COOKIE</tracking-mode>
</session-config>
e Session ID name change configuration is as follows

» Go to tomcat folder, where tomcat is installed

Open conf folder under tomcat (tomcat>>conf)
Open web.xml inside the conf folder (tomcat>>conf>>web.xml)
Under the session-config section add the below lines :
<session-config>

<cookie-config>

<name>id</name>

</cookie-config>

</session-config>

YV V VYV

Y V V

5. Cross site scripting

Requirements:
e The web application shall validate all headers, cookies, query strings, form fields
and hidden fields in order to prevent cross-site scripting(XSs).

Implementation:
o A standard XSS filter is in place on the server side which would remove all HTML &
Script tags from the request data to make sure that Stored XSS is prevented.
e To sanitize the data, OWASP’s XSS library is used.

e As far as developer work is concerned, measures need to be taken by following
Secure coding practices document to prevent XSS.

avanseus

6. SQL injection

Requirements:

Insertion of SQL into input data from the client to the application shall be controlled
in order to avoid SQL injection attacks

Application is not susceptible to SQL injection as SQL relational database is not
used for storing data.
MongoDB is being used and by default Mongo Query injection is not possible unless

the “Swhere” clause is used. It is made sure that the “$where” clause is never used
in the application.

7. Information leakage

Requirements:

The web application shall not disclose any kind of information that can lead to information
leakage, and shall ensure that:

There is no visible or user downloadable files containing information about the
application (Eg: Admin manuals).

Code presented to the user does not contain sensitive information about the
application (Eg: References to databases, passwords, user IDs, application
structure, programmer comments etc.,)

Information sent by the application is limited to minimum.
Identification of the web server type and version shall be removed.

Web applications don't have any downloadable files containing information about
applications.

Code presented to the user does not contain sensitive information & if the user
changes the code from Ul, then the Java security manager makes sure that
sensitive information access, remote connection is blocked.

Web Server version and details will not be shown in the Ul and also in the response
headers too.

avanseu&
8. Default pages

Requirements:
e Default pages from the web server and from the web application shall be disabled
and no unnecessary details shall be shown. A generic error page shall be used

instead.
Implementation:
e All default error pages in the web server are modified to show generic error
messages.

o Web application error page will be a customized page.

9. HTTP methods

Requirements:
e Allunnecessary HTTP methods (Eg: PUT, DELETE, TRACE, OPTIONS) and

WEBDAV methods (Eg: MOVE, PROPFND) shall be disabled on the web
application servers.

Implementation:
¢ Only allowed HTTP methods are GET and POST. Rest all are disabled in the web
server.

RewriteEngine on

RewriteCond %{REQUEST_METHOD}
NTRACE|TRACK|MOVE|PROFIND|OPTIONS|HEAD|DELETE|PUT)
RewriteRule .*$ - [F,L]

10. Human confirmation

Requirements:
e Operations requiring human confirmation (Eg: Password change) shall implement
controls for preventing automatic operations that could be performed by attackers.

Implementation:
e Login happens via Two-factor authentication method. User enters their username &
password, then he will be prompted to put an OTP to login successfully.

avanseus

o Forgot password feature goes through a flow where the user will be sent an auto
generated password to his Email. He needs to login with that and would be
mandatorily asked to change his password.

¢ Change/Reset password feature goes through a flow where the user needs to
confirm his old password and enter new password twice.

11. Cross site request forgery (CSRF or XSRF)

Requirements:
e The web application shall have provisions against Cross-Site Request Forgery
attacks.

Implementation:
e Web application is built with a strong Anti-CSRF framework using the Double submit
cookie design. This is a stateless methodology to prevent CSRF attacks.

12. HTTP strict transport security (HSTS)

Requirements:
e The web application shall implement HTTP Strict Transport Security (HSTS) in

critical sections or when transmitting critical data. In other scenarios the use of SSL
plus user authentication is sufficient.

Implementation:
e HSTS: HTTP Strict Transport Security (HSTS) is a web server directive that informs
user agents and web browsers how to handle its connection through a response

header sent at the very beginning and back to the browser. It forces all the
connections to happen over https instead of http.

e HTTP Strict Transport Security (HSTS) is a web security policy mechanism that
helps to protect websites against protocol downgrade attacks and cookie hijacking.

Your website must have an SSL Certificate.

Redirect ALL HTTP links to HTTPS with a 301 Permanent Redirect.
All subdomains must be covered in your SSL Certificate.

Serve an HSTS header on the base domain for HTTPS requests.
Max-age must be at least 10886400 seconds or 18 Weeks.

VVVYVYYY

https://en.wikipedia.org/wiki/Web_security
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Session_hijacking

avanseus

Configuration in Apache
» Header always set Strict-Transport-Security "max-age=10886400;"

13. Cookie configuration

Requirements:

Httponly flag:

Purpose: An ‘httpOnly cookie’ cannot be accessed by the client side API such as
JavaScript’s. This restriction eliminates the threat of cross site scripting (XSS)
attack.

Secure flag:

Purpose: A ‘secure cookie’ can only be transmitted over secure channel i,e https.
This makes the cookie less likely to be exposed to the attacker.

Path attribute:

Purpose: The ‘path’ attribute signifies the URL or the path to which the cookie is
valid. The default path is set to /.

Domain attribute:

Purpose: The ‘domain’ attribute specifies the domain to which the cookies are valid.
If the attribute is not specified, then the host name of the originating server is used
as a default value.

Implementation:

Session cookie configuration in Tomcat
» Open web.xml inside the conf folder (tomcat>conf>web.xml)

» Under the session-config section add the below lines:

<cookie-config>
<http-only>true</http-only>
<secure>true</secure>
<path></application_name/></path>
<domain>
<ip_address_of the_server/domain_name>
</domain>
</cookie-config>

Other cookies configuration in Apache
» Header edit Set-Cookie *(.*)$ 1;Domain=<Domain_Name>;HttpOnly;Secure;
SameSite=Strict

avanseus

14. SSL protocol - Transport

Requirements:
e Generally, use TLS-1.2 or higher
e Disable TLS-1.0, 1.1, SSLv3 and lower

Implementation
e (o to ssl.conf under /etc/httpd/conf.d/
o Edit the SSLProtocol as below

SSLProtocol -all +TLSv1.2
-all: means disabling all the other protocols available

15. Cipher suite

Requirements:
e Use compatible cipher suites with TLS-1.2
e Avoid using CBC suites which can prevent attackers from using BEAST attacks

Implementation
e (o to ssl.conf under /etc/httpd/conf.d/
o Edit the SSLCipherSuite as below
SSLCipherSuite
ALL:'RSA:ICAMELLIA:'aNULL:!'eNULL:'LOW:I3DES:!MD5:!IEXP:!PSK:!ISRP:!DSS:!
RC4:!SHA1:!SHA256:!SHA384
SSLHonorCipherOrder on

16. Hashing

Requirements:
e Use SHA-2 algorithms
e Disable all other hashing algorithms (Eg: SHA-1, MD5 etc.,)

Implementation
e Go to ssl.conf under /etc/httpd/conf.d/
o Edit the SSLCipherSuite as below
SSLCipherSuite
ALL:'RSA:ICAMELLIA:'aNULL:!'eNULL:'LOW:!I3DES:!MD5:!IEXP:!PSK:!SRP:!DSS:!
RC4:!SHA1:!SHA256:!SHA384
SSLHonorCipherOrder on

avanseus

17. Key exchange protocol

Requirements:

Generally, use ephemeral DH key exchanges (DH & ECDH)
Disable other key exchanges

Implementation:

Go to ssl.conf under /etc/httpd/conf.d/

Edit the SSLCipherSuite as below

SSLCipherSuite
ALL:'RSA:!ICAMELLIA:'aNULL:'eNULL:'LOW:!3DES:!MD5:!EXP:IPSK:!ISRP:IDSS:!
RC4:!SHA1:!SHA256:ISHA384

SSLHonorCipherOrder on

18. SSL/TLS channel configuration

Requirements:

Disable compression

Enable secure renegotiation
Disable client initiated renegotiation
Enable session resumption

Implementation:

Disable Compression: By default, in the Apache server compression is disabled.
Enable secure renegotiation: By default, in the Apache server secure renegotiation
is enabled.

Disable client initiated renegotiation: By default, in the Apache server client initiated
renegotiation is disabled.

Enable session resumption: Apache server maintains a cache to implement session
resumption. Following configuration is needed in Apache server ssl.conf file:

SSLSessionCache shmcb:/run/httpd/ssicache(512000)
SSLSessionCacheTimeout 300

Cache timeout is in seconds.

10

avanseus

19. Hiding server details

Requirements:

e Server Details must be hidden from the Request and Response header.

Implementation:
e Prequiresite:
» Installation of the security module.
» Use the below command to install the module
yum install mod_security

» Use the below command to enable the module. Type the below command in the
terminal.
sudo a2enmod security2

e Configuration: Apache Level

» Go to /etc/httpd/conf.d/ folder.

» Open mod_security.conf file using vi editor.

» Comment out all the lines inside
<IfModule security2_module> block and add the below lines inside the
<IfModule security2_module> block
<IfModule security2_module>
SecRuleEngine on
ServerTokens Full
SecServerSignature
</IfModule>

20. Anti-Clickjacking

Requirements:
e The X-Frame-Options HTTP response header can be used to indicate whether or

not a browser should be allowed to render our application pages in a <frame> ,
<iframe> , <embed> or <object> to avoid Clickjacking.

Implementation:
¢ Configuration: Apache Level

» Go to ssl.conf under /etc/httpd/conf.d/ and add the below line:
= Header always append X-Frame-Options SAMEORIGIN

11

avanseus

21. Prevent directory listing

Requirements:

e To Stop the listing of Directory in the browser.

Implementation:
e Configuration: Apache Level

» Go to httpd.conf under /etc/httpd/conf/ and change the section under
<Directory /> to the lines provided below:

<Directory />
AllowOverride none
Order Deny,Allow
Deny from all
</Directory>

22. Limit request body size

Requirements:

e To Limit the size of the request body.
Implementation:

e Configuration: Apache Level
» (o to ssl.conf under /etc/httpd/conf.d/ and add the below line

<Location "/">
LimitRequestBody <size>
</Location>
Note: <size> in bytes Eg : 5M = 5242880Bytes
<Location "/">

LimitRequestBody 5242880
</Location>

12

avanseus

23. Content security policy

Requirements:
e The Content-Security-Policy allows you to reduce the risk of XSS attacks by
allowing you to define where resources can be loaded from, preventing browsers

from loading data from any other locations. This makes it harder for an attacker to
inject malicious code into your site.

Setting Content Security Policy Header:
Header set Content-Security-Policy "script-src ‘self <source> <source>;”

Where,

script-src: Defines valid sources for JavaScript files.

‘self’: It means sources that have the same scheme (protocol), same host and
same port as the file the content policy is defined in.

<source>: whitelisted/pre-defined sources from where we want the resources to be
loaded.

How to use different directives, what do they do?

1. default-src: The default policy for loading JavaScript, images,
CSS, fonts, AJAX requests, etc.

script-src: Defines valid sources for JavaScript files.
style-src: defines valid sources for CSS files.

Img-src: defines valid sources for images.

font-src: Define from where the protected resource can load
fonts.

akrown

There are other directives as well if the default-src is set to ‘self all the
directives will automatically set to ‘self

Implementation:
e Configuration: Apache Level
» Go to ssl.conf under /etc/httpd/conf.d/ and add the below line

Note: Content security policy for mozilla/chrome/chromium.
X-Content-Security-Policy for internet explorer.

Header always set X-Content-Security-Policy: "default-src 'self';script-src
'self' 'unsafe-inline' 'unsafe-eval' https://maps.googleapis.com/
http://ajax.googleapis.com/;img-src 'self' data: https://khms0.googleapis.com/
https://khms1.googleapis.com/ https://maps.gstatic.com/

13

avanseus

https://www.gstatic.com/ https://maps.googleapis.com/ https://lh3.ggpht.com/
https://cbks0.googleapis.com/;font-src 'self' https://fonts.gstatic.com/;style-src
'self' 'unsafe-inline' https://fonts.googleapis.com/;connect-src 'self"

Header always set Content-Security-Policy: "default-src 'self';script-src 'self’
‘'unsafe-inline' 'unsafe-eval' https://maps.googleapis.com/
http://ajax.googleapis.com/;img-src 'self' data: https://khms0.googleapis.com/
https://khms1.googleapis.com/ https://maps.gstatic.com/
https://www.gstatic.com/ https://maps.googleapis.com/ https://Ih3.ggpht.com/
https://cbks0.googleapis.com/;font-src 'self' https://fonts.gstatic.com/;style-src
'self' 'unsafe-inline' https://fonts.googleapis.com/;connect-src 'self"

Note: the whole header setting should be written in a single line.

The above setting contains the list of all the whitelisted links/resources allowed
by the application. All the other links will be blocked.

14

	Revision history
	1. Objectives
	2. URL specification
	Requirements:
	Implementation:

	3. Data validation
	Requirements:
	Implementation:

	4. Session management
	Requirements:
	Implementation:

	5. Cross site scripting
	Requirements:
	Implementation:

	6. SQL injection
	Requirements:
	Implementation:

	7. Information leakage
	Requirements:
	Implementation:

	8. Default pages
	Requirements:
	Implementation:

	9. HTTP methods
	Requirements:
	Implementation:

	10. Human confirmation
	Requirements:
	Implementation:

	11. Cross site request forgery (CSRF or XSRF)
	Requirements:
	Implementation:

	12. HTTP strict transport security (HSTS)
	Requirements:
	Implementation:

	13. Cookie configuration
	Requirements:
	Implementation:

	14. SSL protocol - Transport
	Requirements:
	Implementation

	15. Cipher suite
	Requirements:
	Implementation

	16. Hashing
	Requirements:
	Implementation

	17. Key exchange protocol
	Requirements:
	Implementation:

	18. SSL/TLS channel configuration
	Requirements:
	Implementation:

	19. Hiding server details
	Requirements:
	Implementation:

	20. Anti-Clickjacking
	Requirements:
	Implementation:

	21. Prevent directory listing
	Requirements:
	Implementation:

	22. Limit request body size
	Requirements:
	Implementation:

	23. Content security policy
	Requirements:
	Implementation:

