[image:]

CAN 4.0
Migration from 3.0 to 4.0
 (
June 17, 2019
Avanseus technologies PVT. LTD.

)

Table of Contents
Objective	2
Upgrade Procedure	2
1.	Update the database with collection name changes	2
2.	Update the database with the new entries to the existing collections	2
3.	Update the database with collection structure changes	4
4.	Update the database with new collections	5
5.	Recreate the database indices	6
6.	Addition of few properties in config. properties file	7
7.	Copying the default NAS mount files	7
8.	Update the new build of CAN in the tomcat server	8

[bookmark: _Toc13563991]
Objective

This document gives step by step procedure to upgrade the CAN 3.0 environment to CAN 4.0.
[bookmark: _Toc13563992]Upgrade Procedure

· Update the database with the changed collection names
· Update the database with the new entries to the existing collections
· Update the database with the new collections
· Recreate the database indices
· Update the new build of CAN in the tomcat server

1. [bookmark: _Toc13563993]Update the database with collection name changes

Following collection names have been changed
· TroubleTicket renamed as Alarm
· TroubleTicketGUI renamed as AlarmGUI
· TroubleTicket_all renamed as Alarm_all
· TroubleTicket _incorrect renamed as Alarm_incorrect
· TroubleTicket_Archive renamed as Alarm_Archive
· Site renamed as EquipmentComponent
· RootCause renamed as Cause
· RootCauseCategory renamed as CauseCategory

Please run the MongoDB script (shown below) to apply the above mentioned changes:

if(db.TroubleTicket.find({}).hasNext()) {
 db.TroubleTicket.renameCollection("Alarm")
}
if(db.TroubleTicketGUI.find({}).hasNext()) {
 db.TroubleTicketGUI.renameCollection("AlarmGUI")
}
if(db.TroubleTicket_all.find({}).hasNext()) {
 db.TroubleTicket_all.renameCollection("Alarm_all")
}
if(db.TroubleTicket_incorrect.find({}).hasNext()) {
 db.TroubleTicket_incorrect.renameCollection("Alarm_incorrect")
}
if(db.TroubleTicket_Archive.find({}).hasNext()) {
 db.TroubleTicket_Archive.renameCollection("Alarm_Archive")
}
if(db.Site.find({}).hasNext()) {
 db.Site.renameCollection("EquipmentComponent")
}
if(db.RootCause.find({}).hasNext()) {
 db.RootCause.renameCollection("Cause")
}
if(db.RootCauseCategory.find({}).hasNext()) {
 db.RootCauseCategory.renameCollection("CauseCategory")
}

2. [bookmark: _Toc13563994]Update the database with the new entries to the existing collections

Rename all the references of the existing Site, Root cause & Trouble ticket in other collections accordingly.
Please run the MongoDB script (shown below) to apply the above mentioned changes:

if(db.Alarm.find({}).hasNext()) { db.Alarm.update({},{$rename:{"aggregator.site":"aggregator.equipmentComponent","aggregator.rootCause":"aggregator.cause", "site_id":"equipmentComponent_id","rootCause_id":"cause_id","ttStatus":"alarmStatus","ttReferenceId":"alarmReferenceId"}},{multi:true})
}
if(db.AlarmGUI.find({}).hasNext()) { db.AlarmGUI.update({},{$rename:{"aggregator.site":"aggregator.equipmentComponent","aggregator.rootCause":"aggregator.cause", "site_id":"equipmentComponent_id","rootCause_id":"cause_id","ttStatus":"alarmStatus","ttReferenceId":"alarmReferenceId"}},{multi:true})
}
if(db.Alarm_all.find({}).hasNext()) { db.Alarm_all.update({},{$rename:{"aggregator.site":"aggregator.equipmentComponent","aggregator.rootCause":"aggregator.cause", "site_id":"equipmentComponent_id","rootCause_id":"cause_id","ttStatus":"alarmStatus","ttReferenceId":"alarmReferenceId"}},{multi:true})
}
if(db.Alarm_Archive.find({}).hasNext()) { db.Alarm_Archive.update({},{$rename:{"aggregator.site":"aggregator.equipmentComponent","aggregator.rootCause":"aggregator.cause", "site_id":"equipmentComponent","rootCause_id":"cause_id","ttStatus":"alarmStatus","ttReferenceId":"alarmReferenceId"}},{multi:true})
}
if(db.Alarm_Archive_all.find({}).hasNext()) { db.Alarm_Archive_all.update({},{$rename:{"aggregator.site":"aggregator.equipmentComponent","aggregator.rootCause":"aggregator.cause", "site_id":"equipmentComponent","rootCause_id":"cause_id","ttStatus":"alarmStatus","ttReferenceId":"alarmReferenceId"}},{multi:true})
}
if(db.Cause.find({}).hasNext()) {
 db.Cause.update({},{$rename:{"rootCauseCategory":"causeCategory"}},{multi:true})
}
if(db.EventFileFormat.find({}).hasNext()) {
 db.getCollection('EventFileFormat').find({}).forEach(function(a){
 a.mappingInformation.mapping.forEach(function(b){
if(b["site_id"] != undefined){
 b.equipmentComponent_id=b.site_id;
delete b["site_id"];
 }
if(b["rootCause_id"] != undefined){
 b.cause_id=b.rootCause_id;
delete b["rootCause_id"];
 }
if(b["ttStatus"] != undefined){
 b.alarmStatus=b.ttStatus;
delete b["ttStatus"];
 }
if(b["ttReferenceId"] != undefined){
 b.alarmReferenceId=b.ttReferenceId;
delete b["ttReferenceId"];
 }
 });
 db.getCollection('EventFileFormat').save(a)
 });
}
if(db.PredictedFault.find({}).hasNext()) {
 db.PredictedFault.update({},{$rename:{"site":"equipmentComponent","rootCause":"cause","ttStatus":"alarmStatus", "ttReferenceId":"alarmReferenceId","ttClosed":"alarmClosed"}},{multi:true})
 db.PredictedFault.update({},{$rename:{"cause.rootCauseCategory":"cause.causeCategory"}},{multi:true})

 db.getCollection('PredictedFault').find({}).forEach(function(a){
if(a.occurences != undefined){
 a.occurences.forEach(function(b){
if(b["ttId"] != undefined){
 b.alarmId=b.ttId;
delete b["ttId"];
 }
 })
 }
if(a.occurences_duplicate != undefined){
 a.occurences_duplicate.forEach(function(b){
if(b["ttId"] != undefined){
 b.alarmId=b.ttId;
delete b["ttId"];
 }
 })
 }
if(a.matches != undefined){
 a.matches.forEach(function(b){
if(b["occurences"] != undefined){
 b.occurences.forEach(function(c){
if(c["ttId"] != undefined){
 c.alarmId=c.ttId;
delete c["ttId"];
 }
 })
 }
 })
 }
 db.getCollection('PredictedFault').save(a)
 });
}

if(db.PredictedFaultTraceRecommender.find({}).hasNext()) {
 db.PredictedFaultTraceRecommender.update({},{$rename:{"site":"equipmentComponent","rootCause":"cause"}},{multi:true})
}
if(db.PredictedFaultRecommender.find({}).hasNext()) { db.PredictedFaultRecommender.update({},{$rename:{"site":"equipmentComponent","rootCause":"cause"}},{multi:true})
}
if(db.PredictedFaultRecommender.find({}).hasNext()) { db.PredictedWorkAssignment.update({},{$rename:{"site_id":"equipmentComponent_id","rootCause_id":"cause_id"}},{multi:true})
}
db.EquipmentComponent.aggregate([{$out: "Equipment"}])
db.EquipmentComponent.aggregate([{$out: "OfficeCode"}])
db.ExcelPageConfiguration.update({}, {$set:{"freezeHeader" : true, "collectionName" : "PredictedFault"}}, {multi:true})

If there are any specific columns or entries in the databases, put through customized code and still refers to Trouble ticket, Site and Root cause, then the delivery developer needs to correct them to Alarm, Equipment component and Cause respectively.

Note:

a. Equipment & Office code are mandatory entities with 4.0. During the upgrade, the Site entity would be renamed as Equipment component. Also, the content in Equipment component will be replicated into Equipment and Office code entities.
b. Prediction assignment policy, Fault history & Prediction filter needs to be re-generated using the utilities explained in the installation document.

3. [bookmark: _Toc13563995]Update the database with collection structure changes

Please take the backup of the existing collections as mentioned below:
If there are any specific configurations that are needed after the upgrade.
The data dump JSON files are available in “MasterTables” directory of the release repository. Use the dump to populate these tables.
After taking the backup of the above collections, run the import script (shown below):

mongoimport --db <db> --collection Config --username <username> --password <password> --file Config.json
mongoimport --db <db> --collection PredictionFilter --username <username> --password <password> --file PredictionFilter.json
mongoimport --db <db> --collection PostProcessorTemplate --username <username> --password <password> --file PostProcessorTemplate.json

After the successful import, please note the following and act accordingly:

· Config - Please check carefully if any values needs to be changed
· Prediction Filter - Please generate the Prediction Key Filter based on the installation guide
· Post Processor Template - Here, Root Cause is replaced with Cause. Please correct the Post processor, if there are any errors caused due to changed import statements in the template.

4. [bookmark: _Toc13563996]Update the database with new collections

Put the new collections in the database. The new collections are available in the “MasterTables” directory of the release repository. The list of collections to be imported into the database for the new features are given below:

· 5bed7c01fd9b9d519fedd798
· 5bed7c22fd9b9d519fedd79b
· 5bed7f6afd9b9d519ffb5776
· 5d0ce5a1cbaaab22bc8aa286
· AlertEmailConfiguration
· DefaultComplexCodeROE
· EntityFilterMaster
· EntityFilterMasterQuery
· EquipmentIcon
· FieldLearntCauses
· PostPredictionProcess
· Resource
· ResourceEntity
· RoeConfigTemplate
· RoeWeightageConfig
· RootCauseAnalysis
· RootCauseAnalysisEntity

Please run the import script (shown below) to load the new tables:

mongoimport --db <db> --collection 5bed7c01fd9b9d519fedd798 --username <username> --password <password> --file 5bed7c01fd9b9d519fedd798.json
mongoimport --db <db> --collection 5bed7c22fd9b9d519fedd79b --username <username> --password <password> --file 5bed7c22fd9b9d519fedd79b.json
mongoimport --db <db> --collection 5bed7f6afd9b9d519ffb5776 --username <username> --password <password> --file 5bed7f6afd9b9d519ffb5776.json
mongoimport --db <db> --collection 5d0ce5a1cbaaab22bc8aa286 --username <username> --password <password> --file 5d0ce5a1cbaaab22bc8aa286.json
mongoimport --db <db> --collection AlertEmailConfiguration --username <username> --password <password> --file AlertEmailConfiguration.json
mongoimport --db <db> --collection DefaultComplexCodeROE --username <username> --password <password> --file DefaultComplexCodeROE.json
mongoimport --db <db> --collection EntityFilterMaster --username <username> --password <password> --file EntityFilterMaster.json
mongoimport --db <db> --collection EntityFilterMasterQuery --username <username> --password <password> --file EntityFilterMasterQuery.json
mongoimport --db <db> --collection EquipmentIcon --username <username> --password <password> --file EquipmentIcon.json
mongoimport --db <db> --collection FieldLearntCauses --username <username> --password <password> --file FieldLearntCauses.json
mongoimport --db <db> --collection PostPredictionProcess --username <username> --password <password> --file PostPredictionProcess.json
mongoimport --db <db> --collection Resource --username <username> --password <password> --file Resource.json
mongoimport --db <db> --collection ResourceEntity --username <username> --password <password> --file ResourceEntity.json
mongoimport --db <db> --collection RoeConfigTemplate --username <username> --password <password> --file RoeConfigTemplate.json
mongoimport --db <db> --collection RoeWeightageConfig --username <username> --password <password> --file RoeWeightageConfig.json
mongoimport --db <db> --collection RootCauseAnalysis --username <username> --password <password> --file RootCauseAnalysis.json
mongoimport --db <db> --collection RootCauseAnalysisEntity --username <username> --password <password> --file RootCauseAnalysisEntity.json

5. [bookmark: _Toc13563997]Recreate the database indices

Rename the database indices as the collection names and entries in the collections are changed.
Run the below MongoDB script to apply this change:

if(db.Alarm.find({}).hasNext()) {
 db.Alarm.dropIndex({"aggregator.site":1})
 db.Alarm.dropIndex({"aggregator.rootCause":1})
 db.Alarm.dropIndex({"ttReferenceId":1})
 db.Alarm.dropIndex({"rootCause_id":1})
 db.Alarm.dropIndex({"rootCause_id":1,"ttStatus":1})
 db.Alarm.dropIndex({"site_id":1,"rootCause_id":1})
 db.Alarm.dropIndex({"site_id":1,"rootCause_id":1,"creationDate":1})
 db.Alarm.dropIndex({"aggregator.site":1,"aggregator.rootCause":1, "aggregator.date":1})
 db.Alarm.dropIndex({"site_id":1,"rootCause_id":1,"creationDate":1,"ttStatus":1})
 db.Alarm.dropIndex({"ttStatus" : 1 , "rootCause_id" : 1, "site_id" : 1, "creationDate" : 1,"technician_id" : 1,"closedDate" : 1})
 db.Alarm.dropIndex({"aggregator.site" : 1 , "aggregator.rootCause" : 1, "aggregator.subRootCause" : 1, "aggregator.date" : 1, "aggregator.faultType" : 1})
 db.Alarm.createIndex({"aggregator.equipmentComponent":1})
 db.Alarm.createIndex({"aggregator.cause":1})
 db.Alarm.createIndex({"alarmReferenceId":1})
 db.Alarm.createIndex({"cause_id":1})
 db.Alarm.createIndex({"cause_id":1,"alarmStatus":1})
 db.Alarm.createIndex({"equipmentComponent_id":1,"cause_id":1})
 db.Alarm.createIndex({"equipmentComponent_id":1,"cause_id":1,"creationDate":1})
 db.Alarm.createIndex({"aggregator.equipmentComponent":1,"aggregator.cause":1,"aggregator.date":1})
 db.Alarm.createIndex({"equipmentComponent_id":1,"cause_id":1,"creationDate":1,"alarmStatus":1})
 db.Alarm.createIndex({"alarmStatus" : 1 , "cause_id" : 1, "equipmentComponent_id" : 1, "creationDate" : 1,"technician_id" : 1,"closedDate" : 1})
 db.Alarm.createIndex({"aggregator.equipmentComponent" : 1 , "aggregator.cause" : 1, "aggregator.date" : 1, "aggregator.faultType" : 1})
 db.Alarm.createIndex({"equipment_id": 1})
}

if(db.PredictedFault.find()) {
 db.PredictedFault.dropIndex({"rootCause.name" : 1, "rootCause.rootCauseCategory": 1, "predictedWindowIdentifier" : 1})
 db.PredictedFault.dropIndex({"rootCause.rootCauseCategory" : 1})
 db.PredictedFault.dropIndex({"rootCause.name" : 1})
 db.PredictedFault.dropIndex({"site.name" : 1, "rootCause.name": 1, "startTimeStamp" : 1})
 db.PredictedFault.createIndex({"cause.name" : 1, "cause.causeCategory": 1, "predictedWindowIdentifier" : 1})
 db.PredictedFault.createIndex({"cause.causeCategory" : 1})
 db.PredictedFault.createIndex({"cause.name" : 1})
 db.PredictedFault.createIndex({"equipmentComponent.name" : 1, "cause.name": 1, "startTimeStamp" : 1})
}

If there are any extra indices added, as part of customer specific customization, apart from the conventional set provided in “MasterTables” directory (which is part of the data load), then the delivery developer has to correct those accordingly.

Please run the below update query which needs the above mentioned indices added in the collection to run correctly.

db.Alarm.aggregate([{$group: {_id: "$equipmentComponent_id", count: {$sum: 1}}},{$sort: {count: -1}}]).forEach(function(doc) {
var id = doc._id;
 db.Alarm.update({equipmentComponent_id: id}, {$set: {equipment_id: id, officeCode_id: id}}, {multi: true});
});

After the above script is run, equipment_id & officeCode_id entries will be created in the Alarm collection. These two fields are mandatory in CAN 4.0 release. The delivery team member has to configure these 2 fields in the Parser screen for the future daily data load.

6. [bookmark: _Toc13563998]Addition of few properties in config. properties file

Please add the below entries in config. properties file. This configuration is to gain admin MongoDB access to run some queries which require admin privileges.

#Note: This configuration is needed to get admin rights.
avanseus.mongodb.admin.username=<admin_username>
avanseus.mongodb.admin.password=<admin_password>
avanseus.mongodb.admin.dbName=<admin_dbname>

7. [bookmark: _Toc13563999]Copying the default NAS mount files

Please copy the files & directory structure available in “nasPath” directory into the NAS mount directory of the deployment environment. The “nasPath” directory is underneath the “MasterTables” directory of release repository. Please do this operation carefully and make sure that the earlier files are not disturbed or replaced due to this.
[bookmark: _GoBack]Also update the nasmount path in DB by executing below script.

	var nasPath = "/home/user"

db.getCollection('5d23282ebb19a8c46c88c105').update({},{$set:{"filePath":nasPath+"/CAN/Resources/RANSharedSites/Report_SSI_H3G.XLS"}}, {multi:true})
db.getCollection('5d23285dbb19a8c46c88c128').update({},{$set:{"filePath":nasPath+"/CAN/Resources/PlannedWorks/Planned 01.05-05.11.2018.xlsx"}}, {multi:true})
db.getCollection('5d232805bb19a8c46c88c0f1').update({},{$set:{"filePath":nasPath+"/CAN/Resources/LongPendingTickets/Sol.xlsx"}}, {multi:true})
db.getCollection('5d232845bb19a8c46c88c117').update({},{$set:{"filePath":nasPath+"/CAN/Resources/SitePriority/Localization_sites.xls"}}, {multi:true})
db.getCollection('FieldLearntCauses').find({}).forEach(function(e){db.getCollection('FieldLearntCauses').update({filePath:e.filePath},{$set:{filePath:nasPath+e.filePath}})})
db.getCollection('PostPredictionProcess').update({"classFilePath":"/CAN/Generated_Dir"},{$set:{"classFilePath":nasPath+"/CAN/Generated_Dir"}},{})
db.getCollection('PostPredictionProcess').update({"javaFilePath":"/CAN/Generated_Dir/postPredictionProcessUploadedFile"},{$set:{"javaFilePath":nasPath+"/CAN/Generated_Dir/postPredictionProcessUploadedFile"}},{})
db.getCollection('ResourceEntity').find({}).forEach(function(e){db.getCollection('ResourceEntity').update({filePath:e.filePath},{$set:{filePath:nasPath+e.filePath}})})
db.getCollection('RootCauseAnalysisEntity').find({}).forEach(function(e){db.getCollection('RootCauseAnalysisEntity').update({filePath:e.filePath},{$set:{filePath:nasPath+e.filePath}})})
db.getCollection('TechnicalAnalysedCauses').update({"filePath":"/CAN/RootCauseAnalysis/technicalAnalysis/SampleFileForTechnicalAnalysis.xlsx"},{$set:{"filePath":nasPath+"/CAN/RootCauseAnalysis/technicalAnalysis/SampleFileForTechnicalAnalysis.xlsx"}},{multi:true})

In the above script, replace the nasmount path value with respective nasmount directory of deployment environment.

8. [bookmark: _Toc13564000]Update the new build of CAN in the tomcat server

a. Delete the earlier build from tomcat “webapps” directory. (Both war and the directory)
b. Take a new build of CAN from 4.0 release and copy to “webapps” directory.
c. Run the tomcat server.
5

image2.png

image1.png

image3.jpeg
A

avanseu&

